Prospects of Investigating Proton Number Fluctuations at SIS18

R. Holzmann, GSI Darmstadt for the HADES collaboration

- Baryon number flucts. in the few-GeV regime
- The HADES experiment at SIS18
- Experimental artifacts
- Outlook: Linking up with the RHIC BES

Is there a CP in the QCD phase diagram?

Lattice QCD calculations: cross-over at low μ_B , 1st-order transition at high μ_B

CP search at RHIC:

Beam energy scan (BES) using Au+Au collisions with $\sqrt{s_{NN}} = 7.7 - 62 \ GeV$

Observables sensitive to CP:

- particle nb. flucts.
- particle ratio flucts. (v_{dyn})
- mean pt flucts.
 - ➔ focus on fluctuations of conserved quantities
 - net baryon number
 - net charge
 - net strangeness

Net proton nb. fluctuations: $\delta(\Delta N_p)$

Net number of protons: $\Delta N_p = N_p - N_{\bar{p}}$

- $\delta(\Delta N_p)$ used as estimate of net baryon nb. fluctuations
- justified for $\sqrt{s} \ge 10 \ GeV$ Kitazawa & Asakawa, PRC 86, 024904 (2012)
- baryon nb. is conserved quantity \rightarrow fluctuations in y-p_t bin
- likewise for net charge & net strangeness fluctuations
- At SIS18: fixed target expt. ($\sqrt{s} \le 2.7 \text{ GeV}$)
 - what about fragments (d, t, He, etc.)?
 - what about neutrons ?

 \rightarrow Here focus is on proton nb. fluctuations $\delta(N_p)$

The HADES experiment at GSI

R. Holzmann HIC for FAIR Workshop

29/07/2015

High Acceptance DiElectron Spectrometer

4

HADES

The HADES experiment at GSI

Iarge coverage: y = 0 - 2

- hadron & lepton PID
- <2% mass resolution</p>
- advanced triggering capabilities

RICH

General documentation at: http://www-hades.gsi.de

R. Holzmann HIC for FAIR Workshop 29/07/2015

HADES

Performance: particle ID

Performance: weak decays

R. Holzmann HIC for FAIR Workshop 29/07/2015

7

Determining the event plane

1.) P. Danielewicz and G. Odyniec, Phys. Lett. 157B, 146 (1985)

Use transverse momentum vectors to approximate event-wise the reaction plane:

$$\mathbf{u}_{1} = \sum_{j=1}^{N} \mathbf{w}_{j} \mathbf{u}_{j}$$

$$\mathbf{w}_{j=1}$$

$$\mathbf{w}_{j} \mathbf{u}_{j}$$

$$\mathbf{w}_{j} \mathbf{u}_{j}$$

$$\mathbf{w}_{j} \mathbf{u}_{j}$$

$$\mathbf{w}_{j} \mathbf{u}_{j}$$

ΗΔΙΟ

2.) S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996)

Azimuthally anisotropic emission pattern described by Fourier expansion:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t} dp_{t} dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos\left[n\left(\phi - \Psi_{R}\right)\right]\right)$$

Where Ψ_R is determined event-by-event from ALL tracks or

→ use Forward Wall hits to determine EP ←

A taste of HADES data: proton flow HADES

Fourier analysis of $dN/d\phi$

HADES

Our sandbox: the Poisson distribution

<u>Reminder</u>: for Poisson $P(\lambda)$ we have:

- mean $\mu = \lambda$
- width $\sigma = \sqrt{\lambda}$
- skewness $Sk = \frac{1}{\sqrt{\lambda}}$
- kurtosis $\kappa = 1/\lambda$

More generally: all cumulants $c_n = \lambda$

It follows that $\frac{c_n}{c_2} = 1$, in particular:

$$\Rightarrow \omega = \frac{\sigma^2}{\mu} = 1, \quad \text{Sk} \times \sigma = 1, \quad \kappa \times \sigma^2 = 1$$

Data need efficiency corrections

Efficiency = acc x det. eff x rec. eff

- 1. Correct measured distributions (bayesian unfolding) Garg et al., J. Phys. G: Nucl. Part. Phys. 40 (2013)
- 2. Correct the moments

Bzdak & Koch, PRC 86 (2012); Xiaofeng, arXiv:1410.3914

➔ used by STAR

Experimental bias: Efficiency

With efficiency = **0.7**

Poisson (λ =40) x Binomial (p=0.7) distribution

Mean = 28 ± 0.0002 Sigma = 5.2915 ± 0.0001 Skewness = 0.1889 ± 0.0001 Kurtosis = 0.0358 ± 0.0002

Omega	=	0.99998	±	0.00004
Skew * Sig	=	0.9993	±	0.0004
Kurt * Sig2	=	1.002	±	0.005
c5/c2	=	1.08	±	0.07

Using the Bzdak-Koch correction procedure:

```
= 40
                   \pm 0.0002
Mean
Sigma
         = 6.3248 \pm 0.0002
Skewness = 0.1585 \pm 0.0001
Kurtosis = 0.0255 \pm 0.0003
             = 1.00009 \pm 0.00006
Omega
                                      ok, but
                        \pm 0.0008
Skew * Sig
             = 1.0022
                                      errors
Kurt * Sig2 = 1.019
                        \pm 0.014
                                      increase!
c5/c2
             = 1.05
                        \pm 0.25
```

Experimental bias: Event pile-up

Poisson (λ =40) x Binomial (p=0.7) distribution

central event is overlayed with random i.e. min-bias event at 10^{-3} level:

lean	= 40.	01 ±	0.00	02	
Sigma	= 6.3	332 ±	0.00	002	
Skewness	= 0.1	627 ±	0.00	002	
Kurtosis	= 0.0	358 ±	0.00	004	
Omega Skew * Si Kurt * Si c5/c2	= g = g2 = =	1.0024 1.0303 1.435 6.51	19 ± 3 ± ±	0.0000 0.0009 0.014 0.26	6
	L				
higher cumulants are affected!					

Evt-by-Evt efficiency changes (I)

Evt-by-Evt efficiency changes (II)

Scenario 2: Correlated changes of ε with track density: $\pm 1\%$ variation correct with mean $\langle \varepsilon \rangle$

Mean = 39.93 ± 0.0002 Sigma = 5.8742 ± 0.0002 Skewness = 0.1223 ± 0.0002 Kurtosis = 0.0082 ± 0.0004

➔ All hell breaks loose !!!

Which phase-space bite to use?

A look at HADES data: Au+Au 1.23 GeV/u

2 different centrality cuts, $y = y_o \pm 0.1$, $p_t = 0.4 - 0.8 \ GeV/c$

→ Data look Poisson-like, but not quite ...

net proton number (RHIC cuts, 0%-5% central)

net proton number (RHIC cuts, 30%-40% central)

Hades proton efficiencies

centrality = 0% - 5%

centrality = 30% - 40%

Things we are still investigating ...

- Centrality selection: META vs. FW → avoid autocorrelation
- Centrality bin width correction
 remove volume fluctuations
- Event pile-up → avoid/remove contamination
- Track density dependence of efficiency correction
 is unfolding a better approach ?
- Role of fragments (d,t,He) \rightarrow do they modify $\delta(\Delta N_p)$?

The ultimate goal is of course ...

Ultimate goal: Compare with RHIC data

7 c.m. energies, 3 centrality selections, within a defined $y-p_t$ bin:

Error bars are statistical only. Systematic errors estimation underway. Dominant contributors: a) efficiency corrections b) PID.

Xiaofeng Luo

Critical Point and Onset of Deconfinement Conference 2014, Bielefeld, Germany

14 / 23

Back up slides

Technical layout of HADES

HADES + FW

HADES at the future FAIR facility

SIS100 (>2020):

p+A up to 15 GeV A+A up to 8 GeV/u

Vector mesons in the medium

A + A $\rho/\omega/\varphi$ p + A $\rho/\omega/\varphi$ p + A $\rho/\omega/\varphi$ r + A $\rho/\omega/\varphi$ r + $\rho/\omega/\varphi$ r + r

Meson	Mass [MeV/c²]	Γ [MeV/c²]	cτ [fm/c]	BR (VM→e+e-)	BR (VM \rightarrow hadrons)
ρ ⁰	770	150	1.3	4.4×10 ⁻⁵	π ⁺ π ⁻ (~100%)
ω	782	8.4	23.4	7.1×10 ⁻⁵	$\pi^0\gamma \rightarrow 3\gamma$ (9%)
φ	1020	4.4	44.4	3.1×10 ⁻⁵	K⁺K⁻ (50%)

No FSI ! FSI !

HADES

Physics we are after with HADES

In very general terms:

Medium modifications of hadrons (e.g. vector mesons)

chiral symmetry restoration vs. hadronic effects

- enhanced dilepton yields \rightarrow emissivity of hot & dense hadronic matter
- in-medium spectral functions

> systematic dilepton spectroscopy in A+A, p+A & π +A (n/n₀ \approx 1-3)

Characterizing a distribution by its moments (or alternatively by its cumulants)

A distribution f(x) is fully characterized by its (central) moments:

$$\mu_n = \mathbf{E} \left[(X - \mathbf{E}[X])^n \right] = \int_{-\infty}^{+\infty} (x - \mu)^n f(x) \, dx.$$

n=0, 1, 2, 3, 4, ...,∞

- n=0: normalization = μ_0
- n=1: mean = μ₁
- n=2: variance = μ_2 (or $\sigma = \sqrt{\mu_2}$) measures width
- n=3: skewness = $\frac{\mu_3}{\sigma^3}$ measures asymmetry
- n=4: kurtosis = $\frac{\mu_4}{\sigma^4}$ 3 measures pointedness/flatness
- n>4: ...

A few common examples

	Mean	Variance	Skewness	Kurtosis
Gauss	μ	σ^2	0	0
Binomial	np	np(1-p)	$\frac{1-2p}{\sqrt{np(1-p)}}$	$\frac{1-6p(1-p)}{np(1-p)}$
Poisson	μ	μ	μ ^{-1/2}	µ-1
Skellam	$\mu_1 - \mu_2$	$\mu_1 + \mu_2$	$\frac{\mu_1 - \mu_2}{(\mu_1 + \mu_2)^{3/2}}$	$\frac{1}{\mu_1 + \mu_2}$

For easier comparison with Skellam (and to reduce the so-called volume effect), one often computes:

$$Sk * \sigma = \frac{\mu_1 - \mu_2}{\mu_1 + \mu_2}$$
 and $\kappa * \sigma^2 = 1$

At low beam energies, $\mu_2 = N_{\bar{p}} = 0$ and $Sk * \sigma = \kappa * \sigma^2 = 1$!

Generalized efficiency corrections

Efficiency depends on particle, centrality, pt & y...

→ need to correct differentially !

Can be done by using the "factorial moments":

Bzdak & Koch, Phys. Rev. C 86 (2012) Xiaofeng Liu, arXiv:1410.3914

$$F_{i,k}(N_p, N_{\bar{p}}) = \left\langle \frac{N_p!}{(N_p - i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}} - k)!} \right\rangle = \sum_{N_p=i}^{\infty} \sum_{N_{\bar{p}}=k}^{\infty} P(N_p, N_{\bar{p}}) \frac{N_p!}{(N_p - i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}} - k)!} \qquad F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k}$$

$$f_{i,k}(n_p, n_{\bar{p}}) = \left\langle \frac{n_p!}{(n_p - i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}} - k)!} \right\rangle = \sum_{n_p=i}^{\infty} \sum_{n_{\bar{p}}=k}^{\infty} p(n_p, n_{\bar{p}}) \frac{n_p!}{(n_p - i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}} - k)!} \qquad F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k}$$

$$\begin{array}{lll} \text{(2)} & A_{i,k}\left(x_{1},\ldots,x_{i};\bar{x}_{1},\ldots,\bar{x}_{k}\right) &= \left\langle N(x_{1})[N(x_{2})-\delta_{x_{1},x_{2}}]\ldots[N(x_{i})-\delta_{x_{1},x_{i}}-\ldots-\delta_{x_{i-1},x_{i}}] \\ & \bar{N}(\bar{x}_{1})[\bar{N}(\bar{x}_{2})-\delta_{\bar{x}_{1},\bar{x}_{2}}]\ldots[\bar{N}(\bar{x}_{k})-\delta_{\bar{x}_{1},\bar{x}_{k}}-\ldots-\delta_{\bar{x}_{k-1},\bar{x}_{k}}] \right\rangle \\ & a_{i,k}\left(x_{1},\ldots,x_{i};\bar{x}_{1},\ldots,\bar{x}_{k}\right) &= \left\langle n(x_{1})[n(x_{2})-\delta_{x_{1},x_{2}}]\ldots[n(x_{i})-\delta_{x_{1},x_{i}}-\ldots-\delta_{x_{i-1},x_{i}}] \\ & \bar{n}(\bar{x}_{1})[\bar{n}(\bar{x}_{2})-\delta_{\bar{x}_{1},\bar{x}_{2}}]\ldots[\bar{n}(\bar{x}_{k})-\delta_{\bar{x}_{1},\bar{x}_{k}}-\ldots-\delta_{\bar{x}_{k-1},\bar{x}_{k}}] \right\rangle. \end{array}$$

(3)
$$F_{i,k} = \sum_{x_1,...,x_i} \sum_{\bar{x}_1,...,\bar{x}_k} A_{i,k} (x_1,...,x_i; \bar{x}_1,...,\bar{x}_k) \\ f_{i,k} = \sum_{x_1,...,x_i} \sum_{\bar{x}_1,...,\bar{x}_k} a_{i,k} (x_1,...,x_i; \bar{x}_1,...,\bar{x}_k) \qquad F_{i,k} = \sum_{x_1,...,x_i} \sum_{\bar{x}_1,...,\bar{x}_k} \frac{a_{i,k} (x_1,...,x_i; \bar{x}_1,...,\bar{x}_k)}{\epsilon(x_1) \dots \epsilon(x_i) \bar{\epsilon}(\bar{x}_1) \dots \bar{\epsilon}(\bar{x}_k)}$$

Towards higher-order cumulants?

Sensitivity to critical fluctuations is expected to increase with order, but same is true for stat. flucs., etc.

→ <10% stat. error needs \approx 10⁹ evts for 6th order, and \approx 10¹³ for 8th order !

(Note: corrections for limited eff & acc will further increase the error)