Rapidity window and centrality dependences of higher order cumulants

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, Ono, Phys. Lett. B728, 386-392 (2014) Sakaida, Asakawa, MK, PRC90, 064911 (2014) MK, arXiv:1505.04349, Nucl. Phys. A, in press

HIC for FAIR workshop, Frankfurt, 30/Jul./2015

In "haiku", a Japanese short style poem, a poet wrote...

Even on one blade of grass the cool wind lives

Issa Kobayashi 1814

ー本の草も涼風宿りけり 小林一茶

Physicists can feel hot early Universe 13 800 000 000 years ago in tiny fluctuations of cosmic microwave

Physicists can feel the existence of microscopic atoms behind random fluctuations of Brownian pollens

A. Einstein 1905

Feel hot quark wind behind fluctuations in relativistic heavy ion collisions

2010-

Outline

- 1. A poem
- 2. Electric charge fluctuation @ ALICE
- 3. Thermal blurring in momentum-space rapidity Ohnishi+, in preparation
- 4. Δη dependences of higher order cumulants MK, Asakawa, Ono, PLB(2014); MK, NPA(2015)
- 5. Effect of global charge conservation

Sakaida, Asakawa, MK, PRC(2014)

Electric charge fluctuations @ ALICE

Charge Fluctuation @ LHC

 $\langle \delta N_Q^2 \rangle$ is not equilibrated at freeze-out at LHC energy!

Fluctuations and Elemental Charge

Asakawa, Heinz, Muller, 2000 Jeon, Koch, 2000 Ejiri, Karsch, Redlich, 2005

$$\langle \delta N_q^n \rangle_c = \langle N_q \rangle$$
$$\Longrightarrow \langle \delta N_B^n \rangle_c = \frac{1}{3^{n-1}} \langle N_B \rangle$$

$$3N_B = N_q$$

$$\langle \delta N_B^n \rangle_c = \langle N_B \rangle$$

Free Boltzmann \rightarrow Poisson $\langle \delta N^n \rangle_c = \langle N \rangle$

Shot Noise

Total charge Q:

$$Q = e\langle N \rangle$$

 $\langle \delta Q^2 \rangle = e^2 \langle \delta N^2 \rangle = e^2 \langle N \rangle = eQ$
 $(\delta Q^2 \rangle = e^2 \langle \delta N^2 \rangle = e^2 \langle N \rangle = eQ$

Shot Noise

$$S_{
m shot} \sim \langle \delta I^2
angle$$

 $S_{
m shot} = 2e^* \langle I
angle$
charge of quasi-particles

Higher order cumulants:

3rd order: ex. Beenakker+, PRL90,176802(2003) up to 5th order: Gustavsson+, Surf.Sci.Rep.**64**,191(2009)

Various Contributions to Fluctuations

Effect of jets <a href="https://www.engliship-conduction-conduc Negative binomial (?) Final state rescattering Enhance to Poisson Coordinate vs pseudo rapidities Z Enhance to Poisson **D** Particle missID **Enhance** to Poisson Ono, Asakawa, MK PRC(2013) Efficiency correction Zenhance to Poisson Global charge conservation U Suppress Sakaida, Asakawa, MK. **PRC**(2014)

The suppression is most probably a consequence of the small fluctuation in deconfined medium.

$$D \sim \frac{\langle \delta N_{\rm Q} \rangle^2}{\Delta \eta}$$

has to be a constant in equil. medium

Fluctuation of N_Q at ALICE is not the equilibrated one.

Fluctuations continue to change until kinetic freezeout!!

achieved only through diffusion. The larger $\Delta\eta$, the slower diffusion.

Conversion of Rapidities

Conversion of Rapidities

Δη dependences of fluctuation observables encode history of the hot medium!

Δη dependences of fluctuation observables encode history of the hot medium! Thermal blurring in momentum-space rapidity

Conversion of Rapidities

flat freezeout surface

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence

Assumptions:

- Centrality independent cumulant at kinetic f.o.
- Thermal blurring at kinetic f.o.

 \blacksquare Centrality dep. of blast wave parameters may not be large enough to describe the one of $\langle \delta N_{\rm Q}^2 \rangle$

- - Existence of another physics having centrality dep.
 More accurate data is desirable!!

Rapidity Window Dependences of Higher Order Cumulants

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta \eta$ dependence.

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

 $<\delta N_{0}^{4} > @ LHC ?$

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Stochastic diffusion equation

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

- \square *n* dependence of diffusion constant *D*(*n*)
- colored noise
- □ discretization of *n*

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

n dependence of diffusion constant *D*(*n*)
 colored noise
 discretization of *n* our choice

REMARK:

Fluctuations measured in HIC are almost Poissonian.

A Brownian Particles' Model

Hadronization (specific initial condition)

(1) Describe time evolution of Brownian particles exactly (2) Obtain cumulants of particle # in $\Delta\eta$

Baryons in Hadronic Phase

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Divide spatial coordinate into discrete cells \dots n_{x-1} n_x n_{x+1} n_{x+2} \dots probability γ γ

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

A Brownian Particles' Model

Initial

Each particle are uncorrelated

. . .

\Box A particle moves $x \rightarrow x'$ with probability P(x-x')

Formula of cumulants
$$\langle \rho(x) \rangle_{\text{final}} = \int dx' P(x - x') \langle \rho(x') \rangle_0$$

Diffusion + Thermal Blurring

$$P(x - x'') = \int dx' P_1(x - x') P_2(x' - x'')$$

Diffusion and thermal blurring can be treated simultaneously

Net Charge Number

Prepare 2 species of (non-interacting) particles

Time evolution of \overline{Q} up to Gauusianity is consistent with the stochastic diffusion equation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Boost invariance / infinitely long system
 Local equilibration / local correlation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Freezeout

Fime evolution via DME

Total Charge Number

In recombination model,

 \square $N_B^{(\text{tot})}$ can fluctuate, while $N_B^{(\text{net})}$ does not.

$\Delta\eta$ Dependence: 4th order

MK, arXiv:1505.04349

Charcteristic $\Delta \eta$ dependences! Cumulants with a $\Delta \eta$ is not the initial value.

4th order : Large Initial Fluc.

MK, arXiv:1505.04349

Initial Condition $D_4 = \frac{\langle Q_{(\text{net})}^4 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 4$ $b = \frac{\langle Q_{(\text{net})}^2 Q_{(\text{tot})} \rangle_c}{\langle Q_{(\text{net})} \rangle}$ $c = \frac{\langle Q_{(\text{tot})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle}$ $D_2 = \frac{\langle Q_{(\text{net})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 1$

 $D \sim M^{-1}$

$\Delta\eta$ Dependence @ STAR

Figure from Jochen Thäder, Yesterday

Non monotonic dependence on $\Delta \eta$?

Effect of Global Charge Conservation (Finite Volume Effect)

Sakaida, Asakawa, MK, PRC, 2014

Global Charge Conservation

Conserved charges in the total system do no fluctuate!

Global Charge Conservation

Conserved charges in the total system do no fluctuate!

Jeon, Koch, PRL2000; Bleicher, Jeon, Koch (2000)

Diffusion in Finite Volume

Solve the diffusion master equation in finite volume

Diffusion in Finite Volume

Solve the diffusion master equation in finite volume

Physical Interpretation

 $d(\tau)$: Averaged Diffusion Distance $D(\tau)$: Diffusion Coefficient η_{tot} : Total Length of Matter

Effects of the GCC appear only near the boundaries.

Comparison with ALICE Result

T

 $\eta_{\rm tot}$

- No GCC effect in ALICE experiments!
- Same conclusion for higher order cumulants

Very Low Energy Collisions

Large contribution of global charge conservationViolation of Bjorken scaling

Careful treatment is required to interpret fluctuations at low beam energies! Many information should be encoded in $\Delta\eta$ dep.

Plenty of information in $\Delta\eta$ dependences of various cumulants

 $\langle N_Q^2 \rangle_c, \ \langle N_Q^3 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_B^3 \rangle_c, \ \langle N_B^4 \rangle_c, \ \langle N_S^2 \rangle_c, \ \cdots$

and those of non-conserved charges, mixed cumulants...

With ∆η dep. we can explore
> primordial thermodynamics
> non-thermal and transport property
> effect of thermal blurring

Future Studies

D Experimental side:

- rapidity window dependences
- baryon number cumulants
- consistency between RHIC and LHC

□ Theoretical side:

- > rapidity window dependences in dynamical models
- description of non-equilibrium non-Gaussianity
- accurate measurements on the lattice

■Both sides:

Compare theory and experiment carefully

> Do not use a fixed $\Delta \eta$ cumulant for comparison!!!