Unfolding the Moments of Multiplicity distributions

Anar Rustamov

a.rustamov@cern.ch

- ✓ Outline
 - ✓ introduction to unfolding
 - ✓ a novel approach
 - \checkmark test on simulation
 - \checkmark application to data

✓ Summary

Unfolding - Introduction

 $R_{ij} = P(\text{observed in } i \mid \text{true value in } j)$

Moments, Cumulants ...

Given: Random variable Y with probability distribution p(y)

nth moment about origin:
$$\langle y^n \rangle = \frac{d^n m(t)}{dt^n} \Big|_{t=0}$$
 $m(t) = \sum_y e^{ty} p(y)$
Cumulants: $C_n = \frac{d^n g(t)}{dt^n} \Big|_{t=0}$ $g(t) = \log[m(t)]$
 $C_1 = \langle y \rangle$
 $C_2 = \langle (y - \langle y \rangle)^2 \rangle = \sigma^2$ $S\sigma = \frac{C_3}{C_2}$
 $C_3 = \langle (y - \langle y \rangle)^3 \rangle = S\sigma^3$ $k\sigma^2 = \frac{C_4}{C_2}$

all cumulants can be expressed in terms of moments

Selected fluctuation measures

Multiplicity fluctuations

Poisson case:
$$\langle N^2 \rangle = \langle N \rangle^2 + \langle N \rangle$$
, $\omega = 1$

Chemical (particle composition) fluctuations

$$\boldsymbol{v}_{dyn} = \frac{\left\langle N_1^2 \right\rangle - \left\langle N_1 \right\rangle}{\left\langle N_1 \right\rangle^2} + \frac{\left\langle N_2^2 \right\rangle - \left\langle N_2 \right\rangle}{\left\langle N_2 \right\rangle^2} - 2\frac{\left\langle N_1 \right\rangle N_2}{\left\langle N_1 \right\rangle \left\langle N_2 \right\rangle} \qquad \boldsymbol{v}_{dyn} \approx \operatorname{sgn}(\boldsymbol{\sigma}_{dyn}) \boldsymbol{\sigma}_{dyn}^2$$

Independent Poisson distributions: $\langle N_i^2 \rangle = \langle N_i \rangle^2 + \langle N_i \rangle$, $\langle N_1 N_2 \rangle = \langle N_1 \rangle \langle N_2 \rangle \equiv v_{dyn} = 0$

$$\Sigma[A,B] = \frac{\langle B \rangle \omega(A) + \langle A \rangle \omega(B) - 2(\langle AB \rangle - \langle A \rangle \langle B \rangle)}{\langle B \rangle + \langle A \rangle}$$
$$\Delta[A,B] = \frac{\langle B \rangle \omega(A) - \langle A \rangle \omega(B)}{\langle B \rangle - \langle A \rangle}$$

 $\omega = \frac{\left\langle N^2 \right\rangle - \left\langle N \right\rangle^2}{\left\langle N \right\rangle} = \frac{Var(N)}{\left\langle N \right\rangle}$

in GCE depend neither on system volume no on its fluctuations

M. I. Gorenstein, M. Gazdzicki PRC 84, 014904 (2011)

all fluctuation measures can be expressed in terms of moments (also mixed)

Theoretical predictions

Phys. Rev. D79, 074505 (2009)

$$C_{n,q} = VT^{3}\chi_{n}^{q}$$

Also cf. talk of M. Gorenstein from yesterday

Particle Identification

$$\vec{p} = m\vec{\beta}\gamma$$

in order to identify the particle at least two independent measures are needed

$$-\left\langle \frac{dE}{dx}\right\rangle (\beta\gamma) \propto \frac{z^2}{\beta^2} \ln(a\beta\gamma)$$

Momentum is obtained by solving the equation of motion in a magnetic field.

✓ Input:

- ✓ set of measured points in space
- ✓ magnetic field map (typically calculated)

simultaneous measurement of momentum and dE/dx allows to identify the identity (mass) of a particle

Particle Identification

measured specific energy loss is in fact distorted:

- Statistical nature of process (Landau)
 - Perform several (n) measurements along the track

$$\sigma_{\langle dE/dx \rangle} \propto 1/\sqrt{n}$$

- Detector specific effects:
 - o pad size
 - o gas pressure
 - 0 ...

NA49: PRC 89 (2014) 054902

Identity method "in a nutshell"

(developed in close collaboration with NA49 and NA61/SHINE)

M. Gazdzicki et al., PRC 83, 054907 (2011)

- M. I. Gorenstein, PRC 84, 024902 (2011), second moments
- A. Rustamov, M. I. Gorenstein, PRC 86, 044906 (2012)

New way of particle counting

Folded multiplicity distribution

standard approach

use additional detector information or reject a given phase space bin

new approach

gives folded multiplicity distribution

(standard unfolding problem)

Folded multiplicity distribution

More overlap -> Stronger folding

3 – particle example

12

Unfolding

instead of unfolding the multiplicity distribution we unfold its moments

$$\left\langle \mathbf{W}_{p}\right\rangle = \frac{1}{\mathbf{N}_{\text{events}}} \sum_{i=1}^{\mathbf{N}_{\text{events}}} \mathbf{W}_{p}^{i} \equiv \left\langle \mathbf{N}_{p}\right\rangle \quad \left\langle \mathbf{W}_{p}^{n}\right\rangle \neq \left\langle \mathbf{N}_{p}^{N}\right\rangle \quad \left\langle \mathbf{W}_{p}\cdot\ldots\cdot\mathbf{W}_{q}\right\rangle \neq \left\langle \mathbf{N}_{p}\cdot\ldots\cdot\mathbf{N}_{q}\right\rangle$$

13

Working example for 2 particles

The Identity Method relates corresponding moments of *W* and multiplicity distributions through a set of linear equations. An example for the second moments:

$$\begin{pmatrix} N_{p}^{2} \\ \langle N_{k}^{2} \\ \langle N_{k}^{2} \rangle \\ \langle N_{p}N_{k} \rangle \end{pmatrix} = \begin{pmatrix} \overline{w}_{pp}^{2} & \overline{w}_{pk}^{2} & 2\overline{w}_{pp}\overline{w}_{pk} \\ \overline{w}_{kp}^{2} & \overline{w}_{kk}^{2} & 2\overline{w}_{kp}\overline{w}_{kk} \\ \overline{w}_{pp}\overline{w}_{kp} & \overline{w}_{pk}\overline{w}_{kk} & \overline{w}_{pp}\overline{w}_{kk} + \overline{w}_{pk}\overline{w}_{kp} \end{pmatrix}^{-1} \begin{pmatrix} \langle W_{p}^{2} \rangle - b_{p} \\ \langle W_{k}^{2} \rangle - b_{k} \\ \langle W_{p}W_{k} \rangle - b_{pk} \end{pmatrix}$$

$$b_{i} = \sum_{j=p,k} \langle N_{j} \rangle (\overline{w}_{ij}^{2} - \overline{w}_{ij}^{2}), \quad b_{pk} = \sum_{j=p,k} \langle N_{j} \rangle (\overline{w}_{pkj} - \overline{w}_{pj}\overline{w}_{kj})$$

$$\overline{w}_{ij} = \frac{\int w_{i}(m)\rho_{j}(m)dm}{\int \rho_{j}(m)dm} \quad \overline{w}_{ij}^{2} = \frac{\int w_{i}^{2}(m)\rho_{j}(m)dm}{\int \rho_{j}(m)dm} \quad \overline{w}_{ikj} = \frac{\int w_{i}(m)w_{k}(m)\rho_{j}(m)dm}{\int \rho_{j}(m)dm}$$

Advantages:

- Event-by-Event fits of PID variable is not needed
- Also no need for event mixing
- Mathematically proven
- M. Gazdzicki et al., PRC 83, 054907 (2011)
- M. I. Gorenstein, PRC 84, 024902 (2011), second moments
- A. Rustamov, M. I. Gorenstein, PRC 86, 044906 (2012) (third and higher moments)

Error Estimation

Instead of using analytical error propagation for each fluctuation measure we use 2 methods:

- 1. Sub-sampling method
 - Data is subdivided into N (30) samples
 - For each sample v_{dyn} is calculated

$$\langle \boldsymbol{v}_{dyn} \rangle = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{v}_{dyn}^{i}$$
 $\sigma = \sqrt{\frac{\sum_{i=1}^{N} \left(\boldsymbol{v}_{dyn}^{i} - \left\langle \boldsymbol{v}_{dyn} \right\rangle \right)^{2}}{N-1}}$

$$\sigma_{\langle v \rangle} = \frac{\sigma}{\sqrt{N}}$$

$$v_{dyn} = \langle \sigma_{dyn} \rangle \pm \sigma_{\langle v \rangle}$$

2. Statistical bootstrapping (not discussed in this talk)

The strategy

Available information:

- > inclusive distribution of PID variable, $\rho_i(x)$
- The Problem:
 - how to find the moments of multiplicity distributions?
- > The strategy:
 - for each measurement x and particle j in an event one defines

$$w_j(x) = \frac{\rho_j(x)}{\sum_j \rho_j(x)}$$

for each event one constructs:

$$W_j = \sum_i w_j(x_i)$$

➢ finally one calculates moments of W distribution

Use the Identity method

to find moments of the multiplicity distributions from known moments of W quantities

TIdentity Module

Ready for publication

Test on simulated data

Moments	Reconstructed Generated (Identity method)		Poisson
<p²></p²>	72.0429 ± 0.0122	72.0452	72
$<\pi^{2}>$	$42.0033 \pm .0073$	42.0011	42
$< K^2 >$	20.0066 ± 0.0052	20.0057	20
<pπ></p	48.0178 ± 0.007	48.0184	48
<pk></pk>	32.0147 ± 0.0057	32.0154	32
<\$\pi K>	24.0026 ± 0.0033	24.002	24
<p<sup>3></p<sup>	712.6391 ± 0.1925	712.6718	712
$<\pi^{3}>$	330.0547 ± 0.0878	330.0316	330
<k3></k3>	116.045 ± 0.0501	116.0372	116
$< p^2 \pi >$	432.307 ± 0.0954	432.3185	432
<p²k></p²k>	288.1968 ± 0.0710	288.2081	288
$<\pi^{2}K>$	168.0083 ± 0.033	167.9971	168
$<\pi^{2}p>$	336.155 ± 0.0786	336.1525	336
<k<sup>2p></k<sup>	160.0986 ± 0.0518	160.0875	160
$< K^2 \pi >$	120.0275 ± 0.0320	120.0174	120
<p\$\p\$\$k></p\$\p\$\$k>	192.0765 ± 0.0379	192.0845	192

18

Test on simulated data

Each box contains $6*10^6$ events $<n_K> = <n_p>$ to test the method in case of strong correlations

A. Rustamov, M. I. Gorenstein, PRC 86, 044906 (2012)

Test on real data of NA49

NA49: PRC 89 (2014) 054902

A. Rustamov, Fluctuation and Correlation Measures, 29-31 July, FIAS

Some experimental results

Results from Identity Method

second moments for central (0-3.5%) Pb+Pb data

		20A GeV/c	30A GeV/c	40A GeV/c	80A GeV/c	158A GeV/c
nput -	<n<sub>p></n<sub>	27.1786	34.876	38.186	47.5179	70.1685
	<n<sub>1></n<sub>	30.5385	66.4564	103.046	226.819	413.295
	<n<sub>K></n<sub>	4.5723	9.2489	13.6526	31.042	56.8712
output	$< N_{p}^{2} >$	764.277	1248.27	1493.64	2304.68	4969.01
	$< N_{\pi}^{2} >$	964.311	4487.12	10737.9	51850.7	172014
	$< N_{K}^{2} >$	25.395	94.9134	200.563	997.228	3312.25
	$Cov[N_pN_{\pi}]$	2.12232	4.29659	9.15544	39.03744	32.00979
	$Cov[N_pN_K]$	-0.73635	-0.62464	0.41682	3.48935	7.5732
	$Cov[N_K N_{\pi}]$	-1.01266	-1.2876	0.30418	15.6246	110.6174

 $Cov[N_1, N_2] = \langle N_1 N_2 \rangle - \langle N_1 \rangle * \langle N_2 \rangle$

NA49: PRC 89 (2014) 054902

Results from Identity Method

agreement with both, published results of NA49, [p,π]: and STAR

- $[K,\pi]$: increasing trend at low energy published by NA49 is reproduced. Difference with STAR remains!
- increasing trend at low energy published by NA49 [K,p]: is reproduced. Difference with STAR remains!

NA49: PRC 89 (2014) 054902

Dependence on acceptance

Thank you for your attention