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1 Introduction1

The LHC Higgs Cross Section Working Group is focused on various steps of the analysis2

chain:3

Data → Pseudo-observables → Model-independent EFT → BSM Models .4

This note concerns model-independent interpretations of the data in the framework of5

effective field theory (EFT) beyond the Standard Model (SM), which is a part of the6

scope of the Working Group 2. The purpose of this note is to propose a common EFT7

language and conventions that could be universally used in LHC Higgs analyses and be8

implemented in numerical tools.9

In the EFT approach, the basic assumption is that the mass scale Λ of new particles10

in the UV theory beyond the SM is larger than the electroweak scale v, Λ � v. If11

this is the case, physics at energies E � Λ can be parametrized by the SM Lagrangian12

supplemented by a set of higher-dimensional operators. These operators are constructed13

out of the SM fields, and respect the local SU(3)× SU(2)×U(1) symmetry of the SM.14

The coefficients of d > 4-dimensional operators in the EFT Lagrangian are of order15

1/Λd−4, and their contribution to amplitudes of physical processes at the energy scale of16

order v scales1 as (v/Λ)d−4. The leading new physics effects are expected from operators17

with d = 6 whose effects scale as (v/Λ)2 (all dimension-5 operators violate the lepton18

number; experimental constraints dictate that their coefficients must be suppressed at19

the level unobservable at the LHC). Since (v/Λ)2 < 1 by construction, EFT is suitable20

to describe small deviations from the SM predictions, except for observables that vanish21

or are suppressed by small parameters in the SM.22

1Apart from the scaling with Λ, the effects of higher-dimensional operators also scale with appropriate
powers of couplings in the UV theory. The latter may be important to assess the validity range of the
EFT description.
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An operator basis is a complete, non-redundant set of dimension-6 operators. Com-23

plete means that any dimension-6 operator is either a part of the basis, or can be obtained24

from a combination of operators in the basis using equations of motion, integration by25

parts, field redefinitions, and Fierz transformations. Non-redundant means it is a mini-26

mal such set. Any basis leads to the same physical predictions concerning possible new27

physics effects. Several bases have been proposed in the literature, and they may be28

convenient for specific applications. In this note we propose a basis that is particularly29

convenient for LHC Higgs analyses.30

Preparing this proposal, we have taken into account the following guidelines:31

- The formulation should be simple enough that it can be used by people not ac-32

quainted with the nuts and bolts of EFTs.33

- The relationship between parameters of the EFT and (pseudo)-observables should34

be transparent.35

- The constraints on EFT parameters from electroweak precision observables should36

be easy to impose.37

- The formalism should be easily implementable in Monte-Carlo codes.38

- The formalism should be flexible enough, such that, in the future, the application39

scope may be extended beyond the original one. In particular, the formalism should40

be applicable outside Higgs physics and allow one to also combine non-LHC data.41

- A connection to the pseudo-observables in the extended kappa formalism should42

be straightforward.43

- Limits of the EFT validity range should be easy to define.44

- The formalism should be well suited to include higher-order QCD and electroweak45

corrections.46

The salient features of our proposal are the following:47

• We restrict ourselves to EFT with dimension-6 operators in the linear formulation48

of electroweak symmetry breaking (in other words, the Higgs boson belongs to a49

doublet of the weak SU(2) group).50

• In the spirit of Ref. [1], we proceed with a classification of the operators that more51

easily map to independent interaction terms of the SM mass eigenstates, in par-52

ticular the W, Z, and the Higgs boson. Such interaction terms are invariant under53

SU(3) × U(1) color and electromagnetic symmetry, but they do not necessarily54

correspond to SU(2)-invariant operators. However, they allow us to identify a set55

of independent couplings from which a complete basis of SU(2)-invariant terms56

is constructed. We denote the latter the Higgs basis. The advantage of this for-57

mulation is that the effective couplings are related in a simpler way to quantities58

observable in experiments, compared to other proposals.59
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• We choose the independent couplings such that the constraints from the Z and W60

partial decay widths (measured with a per-mille precision by the LEP experiment)61

can be easily incorporated. These are among the most stringent constraints on62

EFT parameters, and they have an important impact on possible signals in Higgs63

searches. It is unlikely that, at any point in the future, the precision of LHC64

Higgs searches will be such that the couplings constrained by LEP can be probed65

by the LHC with a comparable accuracy. Therefore it is recommended that the66

the electroweak constraints on Z and W boson couplings to fermions are always67

imposed when analyzing LHC data, especially on Higgs physics. Other precision68

observables, such as WW production or off-shell fermion scattering, lead to less69

stringent constraints that are not discussed in this note (see e.g. [2, 3, 4] for a70

recent discussion).71

• The disadvantage of the Higgs basis is that the operator list is cumbersome, be-72

ing defined by the identification of a set of independent interaction terms after73

electroweak symmetry breaking. For this reason, we also map the Higgs basis to74

a set of manifestly SU(3) × SU(2) × U(1) invariant operators before electroweak75

symmetry breaking. For the latter, in this note we use operators in the Warsaw76

basis of Ref. [5], but it is straightforward to work out a map to any other basis used77

in the literature. Working with SU(3)×SU(2)×U(1) invariant operators may be78

more convenient for certain calculations (for example, when renormalization group79

running of the Wilson coefficients needs to be calculated).80

• We do not demand that the dimension-6 operators are flavor blind. While generic81

constraints on flavor violation are strong, it is plausible that there is a large hier-82

archy between the coefficients of dimension-6 operators corresponding to different83

fermion generations. In particular, many models predict the coefficients of opera-84

tors involving the 3rd generation to be much larger than those involving the first85

two generations. Keeping the more general approach will allow us to obtain much86

more robust constraints on new physics.87

• We allow CP violating operators to be present in our basis. In particular, we88

discuss the most general set of Higgs couplings to matter that include CP violating89

couplings.90

• We assume that dimension-6 operators conserve the baryon and lepton number.91

In Section 2, to define our notation and conventions, we write down the Standard92

Model (SM) Lagrangian. In Section 3 we define the Higgs basis, which is the basis we93

propose for LHC Higgs analyses. The dictionary between the independent couplings94

and Wilson coefficients of SU(3)×SU(2)×U(1) invariant dimension-6 operators in the95

Warsaw basis is worked out in Section 4.96
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2 Standard Model Lagrangian97

The SM Lagrangian in our notation takes the form98

LSM = −1

4
Ga
µνG

a
µν −

1

4
W i
µνW

i
µν −

1

4
BµνBµν +DµH

†DµH + µ2
HH

†H − λ(H†H)2

+
∑
f∈q,`

if̄LγµDµfL +
∑

f∈u,d,e

if̄RγµDµfR

−
[
H̃†ūRyuqL +H†d̄RydV

†
CKMqL +H†ēRye`L + h.c.

]
. (2.1)

Here, Ga
µ, W i

µ, and Bµ denote the gauge fields of the SU(3) × SU(2) × U(1) local99

symmetry. The corresponding gauge couplings are denoted by gs, g, g′; we also define the100

electromagnetic coupling e = gg′/
√
g2 + g′2, and the Weinberg angle sθ = g′/

√
g2 + g′2.101

The field strength tensors are defined as Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , W

i
µν =102

∂µW
i
ν − ∂νW

i
µ + gεijkW j

µW
k
ν , Bµν = ∂µBν − ∂νBµ. The Higgs doublet is denoted as103

H, and we also define H̃i = εijH
∗
k . It acquires the vacuum expectation value (VEV)104

〈H†H〉 = v2/2. In the unitary gauge, H = (0, (v + h)/
√

2), where h is the Higgs105

boson field. After electroweak symmetry breaking, the electroweak gauge boson mass106

eigenstates are defined as W± = (W 1 ∓ iW 2)/
√

2, Z = cθW
3 − sθB, A = sθW

3 + cθB,107

where cθ =
√

1− s2
θ. The tree-level masses of W and Z bosons are given by mW = gv/2,108

mZ =
√
g2 + g′2v/2. The left-handed Dirac fermions qL = (uL, VCKMdL) and `L =109

(νL, eL) are doublets of the SU(2) gauge group, and the right-handed Dirac fermions110

uR, dR, eR are SU(2) singlets. All fermions are 3-component vectors in the generation111

space, and yf are 3× 3 matrices. We work in the basis where the fermion mass matrix112

is diagonal with real, positive entries. In this basis, yf are diagonal, and the fermion113

masses are given by mfi = v[yf ]ii/
√

2.114

For later convenience, we explicitly write down the gauge boson mass terms:115

LSM
mass =

g2v2

4
W+
µ W

−
µ +

(g2 + g′2)v2

8
ZµZµ, (2.2)

the gauge boson couplings to fermions:116

LSM
aff = eAµ

∑
f∈u,d,e

Qf f̄γµf + gsG
a
µ

∑
f∈u,d

f̄γµT
af, (2.3)

117

LSM
vff =

g√
2

(
W+
µ ūLγµVCKMdL +W+

µ ν̄LγµeL + h.c.
)

+
√
g2 + g′2Zµ

∑
f∈u,d,e,ν

(
T 3
f f̄LγµfL − s2

θQf f̄γµf
)
, (2.4)

the couplings of the Higgs boson to gauge bosons, fermions, and itself:118

LSM
h =

(
h

v
+

h2

2v2

)[
g2v2

2
W+
µ W

−
µ +

(g2 + g′2)v2

4
ZµZµ

]
− h

v

∑
f

mf f̄f −
m2
h

2v
h3 − m2

h

8v2
h4,

(2.5)
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and the triple and quartic self-interactions of the vector bosons:119

LSM
tgc = ie

[(
W+
µνW

−
µ −W−

µνW
+
µ

)
Aν + AµνW

+
µ W

−
ν

]
+ igcθ

[(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν + ZµνW

+
µ W

−
ν

]
− gsf

abc∂µG
a
νG

b
µG

c
ν . (2.6)

120

LSM
qgc =

g2

2

(
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ g2c2

θ

(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ g2s2

θ

(
W+
µ AµW

−
ν Aν −W+

µ W
−
µ AνAν

)
+ g2cθsθ

(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
− g2

sf
abcfadeGb

µG
c
νG

d
µG

e
µ. (2.7)

These couplings depend on just 5 input parameters: gs, g, g′, mh and v. The Higgs boson121

mass mh has been precisely measured at the LHC, while the strong coupling constant122

is extracted from jet production data. The remaining 3 parameters are customarily123

derived from the observable Fermi constant GF (more precisely, from the measured124

muon lifetime τµ = 192π3/G2
Fm

5
µ), Z boson massmZ , and the low-energy electromagnetic125

coupling α(0). The tree-level relations between the input observables and the electroweak126

parameters are given by:127

GF =
1√
2v2

, α =
g2
Lg

2
Y

4π(g2
L + g2

Y )
, mZ =

√
g2
L + g2

Y v

2
. (2.8)

3 Higgs Basis128

We present the effective dimension-6 Lagrangian in the linear realization of electroweak129

symmetry in a formalism inspired by (but not identical to) Ref. [1]. The goal is to130

choose a particular basis of operators that can be more easily connected (at least at131

tree-level) to observable quantities in Higgs physics. The basis, which we call the Higgs132

basis, is spanned by particular combinations of dimension-6 operators. Each of these133

combinations maps to a simple interaction term of the SM mass-eigenstate fields that134

can be probed by experiment. The coefficients multiplying these combinations in the135

Lagrangian are called the independent couplings. In order to make the Higgs basis136

convenient to study Higgs physics, the couplings of W and Z bosons to fermions and137

single Higgs couplings to the SM fermions and gauge bosons are chosen among the138

independent couplings.139

We stress that the Higgs basis should be regarded as one of many possible bases of140

the dimension-6 Lagrangian beyond the SM. In particular, the independent couplings141

can be related by a linear transformation to parameters defining any other such basis142

in the literature, for example the Warsaw [5] or the SILH [6] basis. At the same time,143

the independent couplings can be easily connected to Higgs pseudo-observables at the144

amplitude level, as defined e.g. in Ref. [7].145

By construction, our effective Lagrangian has the following features:146

• All kinetic terms of SM mass eigenstates are canonically normalized. In particular,147

there is no kinetic mixing between the Z boson and the photon.148
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• Tree-level relations between the electroweak parameters and input observables are149

the same as the SM ones in Eq. (2.8). In particular, the photon and the gluon150

interact with fermions as in Eq. (2.3), and there is no correction to the Z boson151

mass term.152

• Two-derivative self-interactions of the Higgs boson are absent.153

In general, dimension-6 operators do induce corrections to the Lagrangian that do not154

respect these features. However, all 3 above features can always be achieved, without155

any loss of generality, by using equations of motion, integrating by parts, and redefining156

the fields and couplings.157

In the complete effective Lagrangian each independent coupling multiplies an inde-158

pendent combination of SU(3)× SU(2)× U(1) invariant operators (such combinations159

formally define the operator basis). However, we find it more transparent to define160

the independent couplings via the interaction terms of SM mass eigenstates in the La-161

grangian after electroweak symmetry breaking: see the Section 4 for the expressions162

of the independent couplings in terms of Wilson coefficients of SU(3) × SU(2) × U(1)163

invariant operators.164

Several other Higgs couplings can be expressed by the independent couplings; we165

call them the dependent couplings. The relations between dependent and independent166

couplings displayed below hold at the level of the dimension-6 Lagrangian, and they are167

in general not respected by dimension-8 and higher operators. Of course, the choice168

which couplings are independent and which are dependent is subjective and dictated169

by convenience. In our case, the independent couplings are more easily mapped to170

observables constrained by electroweak precision tests and Higgs searches. However,171

other choices can be envisaged and may be more convenient for other applications.172

3.1 Kinetic terms173

In the Higgs basis, by construction, dimension-6 operators do not introduce corrections174

to kinetic of the SM mass eigenstates. The only exception is the (relative) shift of the175

W boson mass, which is an independent parameter in our formalism:176

Independent : δm. (3.1)

It is defined as a correction to the SM W boson mass in the Lagrangian of Eq. (2.2):177

LD=6
kinetic = 2δm

g2v2

4
W+
µ W

−
µ . (3.2)

While δm is a free parameter from the EFT point of view, precision measurements of178

the W mass constrain it to be smaller than 10−3.179

3.2 Vertex corrections180

We choose the following set of independent and dependent vertex corrections:181

Independent : δgZeL , δgZeR , δgW`
L , δgZuL , δgZuR , δgZdL , δgZdR , δgWq

R ,

Dependent : δgZνL , δgWq
L , (3.3)
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where all the δg are 3× 3 Hermitian matrices in the generation space, except for δgWq
R182

who is a general 3× 3 complex matrix. These parameters are defined via corrections of183

the SM W and Z couplings to fermions in the Lagrangian of Eq. (2.3).184

LD=6
vertex =

g√
2

(
W+
µ ν̄Lγµδg

W`
L eL +W+

µ ūγµδg
Wq
L VCKMdL +W+

µ ūRγµδg
Wq
R dR + h.c.

)
+

√
g2 + g′2Zµ

[ ∑
f∈u,d,e,ν

f̄Lγµδg
Zf
L fL +

∑
f∈u,d,e

f̄Rγµδg
Zf
R fR

]
(3.4)

where the dependent couplings δgZνL , δgWq
L can be expressed by the independent couplings185

as:186

δgZνL = δgZeL + δgW`
L , δgWq

L = δgZuL − δgZdL . (3.5)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-187

nos) as our independent couplings, because in the flavor non-universal case the former are188

more directly constrained by experiment (in particular, in leptonic W decays measured189

at LEP).190

The parameters in Eq. (3.3) form a complete set to describe all single on-shell Z and191

W decay and production processes within an EFT with linear realization of electroweak192

symmetry. They are free parameters from the effective field theory viewpoint but, as we193

argue in more detail near the end of this section, they are typically strongly constrained194

by precision measurements of Z and W production and decays at LEP.195

3.3 Dipole moments196

At the dimension-6 level the dipole-type interactions are described by the following197

independent and dependent couplings:198

Independent : dGu, dGd, dAe, dAu, dAd, dZe, dZu, dZd,

d̃Gu, d̃Gd, d̃Ae, d̃Au, d̃Ad, d̃Ze, d̃Zu, d̃Zd;

Dependent : dWq, d̃Wq, (3.6)

where all the dV f and d̃V f are Hermitian matrices. They are defined by the following199

interactions between the gauge boson and fermions:200

LD=6
dipole = − 1

4v

[
gs
∑
f∈u,d

f̄σµνT
adGffG

a
µν + e

∑
f∈u,d,e

f̄σµνdAffAµν

+
√
g2 + g′2

∑
f∈u,d,e

f̄σµνdZffZµν +
√

2g
(
d̄σµνdWquW

−
µν + h.c.

)]

− 1

4v

[
gs
∑
f∈u,d

f̄σµνT
ad̃GffG̃

a
µν + e

∑
f∈u,d,e

f̄σµν d̃AffÃµν

+
√
g2 + g′2

∑
f∈u,d,e

f̄σµν d̃ZffZ̃µν +
√

2g
(
d̄σµν d̃WquW̃

−
µν + h.c.

)]
, (3.7)

where σµν = i[γµ, γν ]/2. The dependent coupling are related to the independent ones by201

c2
θdWq = dWu − dWd, c2

θd̃Wq = d̃Wu − d̃Wd. (3.8)
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3.4 Single Higgs couplings to gauge bosons202

Interactions of the Higgs bosons with the SM gauge boson are described by the following203

independent and dependent couplings:204

Independent : cgg, δcz, cγγ, czγ, czz, cz2, c̃gg, c̃γγ, c̃zγ, c̃zz;

Dependent : δcw, cww, c̃ww, cw2, cγ2. (3.9)

These couplings do not affect the precision W and Z observables at tree-level, therefore205

they are only weakly constrained. Typically, the strongest limits on the independent206

couplings in Eq. (3.9) come from Higgs studies at the LHC.207

The couplings listed in Eq. (3.9) are defined via the Higgs boson couplings to the SM208

gauge bosons:209

∆LD=6
hvv =

h

v

[
2δcwm

2
WW

+
µ W

−
µ + δczm

2
ZZµZµ

+cww
g2

2
W+
µνW

−
µν + c̃ww

g2

2
W+
µνW̃

−
µν + cw2g

2
(
W−
µ ∂νW

+
µν + h.c.

)
+cgg

g2
s

4
Ga
µνG

a
µν + cγγ

e2

4
AµνAµν + czγ

eg

2cθ
ZµνAµν + czz

g2

4c2
θ

ZµνZµν

+cz2g
2Zµ∂νZµν + cγ2gg

′Zµ∂νAµν

+c̃gg
g2
s

4
Ga
µνG̃

a
µν + c̃γγ

e2

4
AµνÃµν + c̃zγ

eg

2cθ
ZµνÃµν + c̃zz

g2

4c2
θ

ZµνZ̃µν

]
.

(3.10)

Here Xµν = ∂µXν − ∂νXµ, and X̃µν = εµνρσ∂ρXσ. The dependent couplings can be210

expressed by the independent couplings as2
211

δcw = δcz + 4δm,

cww = czz + 2s2
θczγ + s4

θcγγ,

c̃ww = c̃zz + 2s2
θ c̃zγ + s4

θ c̃γγ,

cw2 =
1

g2 − g′2
[
g2cz2 + g′2czz − e2s2

θcγγ − (g2 − g′2)s2
θczγ

]
,

cγ2 =
1

g2 − g′2
[
2g2cz2 + (g2 + g′2)czz − e2cγγ − (g2 − g′2)czγ

]
. (3.11)

Note that, using equations of motion, we could get rid of certain 2-derivative inter-212

actions between the Higgs and gauge bosons: hZµ∂νZνµ, hZµ∂νAνµ, and hW±
µ ∂νW

∓
νµ.213

These interactions would then be traded for additional contact interactions of the Higgs,214

gauge bosons and fermions Eq. (3.17), which would change the relation between the215

coefficients of these contact interactions cV f and independent couplings. We find the216

current representation more convenient in practice. Namely, in the presence of the box217

couplings satisfying the relations in Eq. (3.11), one has cV f = δgV f . Since vertex cor-218

rections strongly constrained by precision observables, they can be set to zero in LHC219

analyses. If that is done, all the contact interaction terms are consequently also set to220

zero.221

2The relation between cww, c̃ww and other parameters can also be viewed as a consequence of the
accidental custodial symmetry at the level of the dimension-6 operators [8].
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3.5 Single Higgs couplings to fermions222

The single Higgs couplings to the SM fermions are described by the following set of223

independent couplings:224

Independent : δyu, δyd, δye, sinφu, sinφd, sinφ`. (3.12)

where δyf and sinφf are 3× 3 real matrices. They are defined via the corrections Higgs225

boson couplings to the SM fermions:226

LD=6
hff = −h

v

∑
f∈u,d,e

∑
ij

√
mfimfj [δyf ]ij

[
Osφfij f̄ifj − i sinφfij f̄iγ5fj

]
. (3.13)

As in the case of the Higgs boson couplings to gauge boson, these couplings do not affect227

the precision W and Z observables at tree-level. Limits on some of the independent228

couplings in Eq. (3.12) come from Higgs studies at the LHC.229

3.6 Higgs contact interactions with fermions and gauge bosons230

At the dimension-6 level there arise contact interactions between the Higgs boson, one231

gauge boson, and two fermions, which are not present in the SM. To describe these, we232

need the following set of dependent couplings:233

Dependent : dhGu, dhGd, dhAe, dhAu, dhAd, dhZe, dhZu, dhZd, dhWq,

d̃hGu, d̃hGd, d̃hAe, d̃hAu, d̃hAd, d̃hZe, d̃hZu, d̃hZd, d̃hWq,

cZeL , c
Ze
R , c

Zν
L , cW`

L , cZuL , cZuR , cZdL , cZdR , , cWq
L , cWq

R . (3.14)

These coupling are 3 × 3 Hermitian matrices, except for cWq
R who is a general 3 × 3234

complex matrix. The couplings in the first two lines are defined by the following dipole-235

type contact interactions of the Higgs boson:236

LD=6
hdvff = − h

4v2

[
gs
∑
f∈u,d

f̄σµνT
adhGffG

a
µν + e

∑
f∈u,d,e

f̄σµνdhAffAµν

+
√
g2
L + g2

Y

∑
f∈u,d,e

f̄σµνdhZffZµν +
√

2gL
(
d̄σµνdhWquW

−
µν + h.c.

)]

− h

4v2

[∑
f∈u,d

f̄σµνT
ad̃hGffG̃

a
µν + e

∑
f∈u,d,e

f̄σµν d̃hAffÃµν

+
√
g2
L + g2

Y

∑
f∈u,d,e

f̄σµν d̃hZffZ̃µν +
√

2gL

(
d̄σµν d̃hWquW̃

−
µν + h.c.

)]
.(3.15)

The coefficient above are simply related to the independent couplings describing dipole237

interactions in Eq. (3.6):238

dhV f = dV f , d̃hV f = d̃V f . (3.16)
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The couplings in the last line of Eq. (3.14) are defined via the vertex-like contact inter-239

actions between the Higgs, electroweak gauge bosons, and fermions:240

LD=6
hvff =

√
2g
h

v
W+
µ

(
ūLγµc

Wq
L VCKMdL + ūRγµc

Wq
R dR + ν̄Lγµc

W`
L eL

)
+ h.c.

+ 2
h

v

√
g2 + g′2Zµ

[ ∑
f=u,d,e,ν

f̄Lγµc
Zf
L fL +

∑
f=u,d,e

f̄Rγµc
Zf
R fR

]
, (3.17)

The coefficients of these interactions are simply related to the vertex correction intro-241

duced in Eq. (3.3):242

cZf = δgZf , cWf = δgWf . (3.18)

3.7 Triple and quartic gauge couplings243

To describe the triple gauge couplings we need the following independent and dependent244

couplings:245

Independent : λz, λ̃z, c3G, c̃3G;

Dependent : δg1,z, δκγ, δκz, λγ, κ̃γ, κ̃z, λ̃γ. (3.19)

These couplings are defined via cubic interactions of gauge bosons, in addition to the246

SM ones in Eq. (2.6):247

LD=6
v3 = ie

[
δκγAµνW

+
µ W

−
ν + κ̃γÃµνW

+
µ W

−
ν

]
+ igcθ

[
δg1,z

(
W+
µνW

−
µ −W−

µνW
+
µ

)
Zν + δκz ZµνW

+
µ W

−
ν + κ̃z Z̃µνW

+
µ W

−
ν

]
+ i

e

m2
W

[
λγW

+
µνW

−
νρAρµ + λ̃γW

+
µνW

−
νρÃρµ

]
+ i

gcθ
m2
W

[
λzW

+
µνW

−
νρZρµ + λ̃zW

+
µνW

−
νρZ̃ρµ

]
+

c3G

v2
g3
sf

abcGa
µνG

b
νρG

c
ρµ +

c̃3G

v2
g3
sf

abcG̃a
µνG

b
νρG

c
ρµ, (3.20)

where the dependent couplings can be expressed by the independent couplings as248

δg1,z =
1

2(g2 − g′2)

[
cγγe

2g′2 + czγ(g
2 − g′2)g′2 − czz(g2 + g′2)g′2 − cz2(g2 + g′2)g2

]
δκγ = −g

2

2

(
cγγ

e2

g2 + g′2
+ czγ

g2 − g′2

g2 + g′2
− czz

)
,

κ̃γ = −g
2

2

(
c̃γγ

e2

g2 + g′2
+ c̃zγ

g2 − g′2

g2 + g′2
− c̃zz

)
,

δκz = δg1,z − t2θδκγ, κ̃z = −t2θκ̃γ,
λγ = λz, λ̃γ = λ̃z. (3.21)

The couplings of electroweak gauge bosons follow the customary parametrization of249

Ref. [9]: Other possible cubic gauge interactions do not appear at the dimension-6 level.250

Similarly, cubic gauge interactions with only neutral electroweak gauge bosons do not251

appear at the dimension-6 level.252
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Note that δg1,z, δκγ, and κ̃γ are dependent couplings here, unlike in Ref. [1]. Our253

motivation is that the Higgs basis should be parametrized such that the connection254

with Higgs observables is the simplest. However, for the sake of studying WW and255

WZ production a different set of independent couplings would be more convenient. For256

example, one could choose the independent couplings as δg1,z, δκγ, λz, κ̃γ, λ̃z, and257

consider cz2, czz, and c̃zz as dependent couplings expressed by this set.258

At the level of the D = 6 Lagrangian, the corrections to the zero-derivative quartic259

gauge couplings in Eq. (2.6) are fixed by δg1,z:260

LD=6
v4 = δgW 4

g2

2

(
W+
µ W

+
µ W

−
ν W

−
ν −W+

µ W
−
µ W

+
ν W

−
ν

)
+ δgW 2Z2g2c2

θ

(
W+
µ ZµW

−
ν Zν −W+

µ W
−
µ ZνZν

)
+ δgW 2Zγg

2cθsθ
(
W+
µ ZµW

−
ν Aν +W+

µ AµW
−
ν Zν − 2W+

µ W
−
µ ZνAν

)
, (3.22)

261

δgW 4 = 2c2
θδg1,z, δgW 2Z2 = 2δg1,z, δgW 2Zγ = δg1,z. (3.23)

On top of that, two-derivative quartic gauge couplings appear with the coefficient related262

to λz and c3G:263

LD=6
d2v4 = −g

2

2

λz
m2
W

(
W+
µνW

−
νρ −W−

µνW
+
νρ

) (
W+
µ W

−
ρ −W−

µ W
+
ρ

)
− g2c2

θ

λz
m2
W

[
W+
µ

(
ZµνW

−
νρ −W−

µνZνρ
)
Zρ +W−

µ

(
ZµνW

+
νρ −W+

µνZνρ
)
Zρ
]

− e2 λz
m2
W

[
W+
µ

(
AµνW

−
νρ −W−

µνAνρ
)
Aρ +W−

µ

(
AµνW

+
νρ −W+

µνAνρ
)
Aρ
]

− egcθ
λz
m2
W

[
W+
µ

(
AµνW

−
νρ −W−

µνAνρ
)
Zρ +W−

µ

(
AµνW

+
νρ −W+

µνAνρ
)
Zρ
]

− egcθ
λz
m2
W

[
W+
µ

(
ZµνW

−
νρ −W−

µνZνρ
)
Aρ +W−

µ

(
ZµνW

+
νρ −W+

µνZνρ
)
Aρ
]

+ 3g3
s

c3G

v2
fabcf cdeGa

µνG
b
νρG

d
ρG

e
µ + CP odd, (3.24)

where CP odd stands for analogous terms with λz → λ̃z, c3G → c̃3G, and one of the field264

strength tensor replaced by the dual one.265

3.8 Couplings of two Higgs bosons266

To describe double Higgs production process gg → hh at the LHC we need, apart from267

the single Higgs couplings introduced in Section 3.6, the following independent and268

dependent couplings269

Independent : δλ3,

Dependent : c
(2)
gg , c̃

(2)
gg , y

(2)
u , y

(2)
d , y

(2)
e . (3.25)

The independent coupling is defined via the correction to the triple Higgs boson coupling270

in Eq. (2.5)271

LD=6
h3 = −δλ3vh

3. (3.26)
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The dependent couplings are defined via double Higgs interaction with fermions and272

gluons (which are not present in the SM):273

LD=6
hhff =

h2

v2

g2
s

8

(
c(2)
gg G

a
µνG

a
µν + c̃(2)

gg G
a
µνG̃

a
µν

)
− h2

2v2

∑
f ;ij

√
mfimfj

[
f̄i,R[y

(2)
f ]ijfj,L + h.c.

]
.

(3.27)
They are related to the independent couplings by274

c(2)
gg = cgg, c̃(2)

gg = c̃gg,

[y
(2)
f ]ij = 3[δyf ]ije

iφij − δcz δij, (3.28)

Besides the couplings to fermions, other dependent couplings with two Higgs bosons275

arise at the dimension-6 level. Specifically, these are the couplings h2V V to the SM276

electroweak gauge bosons, and h2ffV contact interactions. As these do not play the277

role in the double Higgs production processes currently studied at the LHC, we do not278

display them here.279

3.9 Four-fermion terms280

In order to promote our framework to a complete D = 6 basis it is necessary to include281

4-fermion terms. These are not relevant for Higgs searches at the LHC at tree level,282

therefore we discuss them in less detail than the interactions listed in the previous283

section. The 4-fermion Lagrangian is given by284

LD=6
4f =

∑
i

c4f,iO4f,i. (3.29)

We choose the set of 4-fermion operators O4f,i to coincide with those in the Warsaw285

basis, see the bottom columns of Table 1. There is only one subtlety that needs to be286

taken into account. The basic premise of the Higgs basis is that the tree-level relation287

between the SM electroweak parameters and input observables is not affected by new288

physics. On the other hand, one of the four-fermion couplings in the Lagrangian,289

LD=6
4f ⊃ [c``]1221(¯̀

1,Lγρ`2,L)(¯̀
2,Lγρ`1,L) (3.30)

does affect the relation between the parameter v and the muon decay width from which290

GF = 1/
√

2v2 is determined:291

Γ(µ→ eνν)

Γ(µ→ eνν)SM

≈ 1 + 2[δgWe
L ]11 + 2[δgWe

L ]22 − 4δm− [c``]1221. (3.31)

Therefore, to keep the muon width unchanged, [c``]12;21 has to be a dependent coupling292

related to the independent parameters δm and δg as293

[c``]1221 = 2δ[gWe
L ]11 + 2[δgWe

L ]22 − 4δm. (3.32)

Hence, in the Higgs basis the coefficient of one 4-lepton operators defined in the Warsaw294

basis is a dependent coupling; coefficients of all the remaining 4-fermion operators are295

independent couplings.296
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3.10 Summary of the Higgs basis Lagrangian297

In summary, the Higgs basis is parametrized by the independent couplings in Eqs. (3.1),298

(3.3), (3.6), (3.9), (3.12), (3.19). In total, the Higgs basis, much as any complete basis299

at the dimension-6 level, is parametrized by 2499 independent real couplings [10]. One300

should not, however, be intimidated by this number. The point is that a much smaller301

subset in Eq. (3.9) is adequate for EFT analyses of Higgs data at the leading order in302

new physics parameters. For example, to describe single Higgs production and decay303

processes in full generality one needs 10 bosonic and 2 × 3 × 3 × 3 = 54 fermionic304

couplings. Furthermore, 31 of these couplings are CP-odd, therefore they affect the305

Higgs signal strength measurement only at the quadratic level, while flavor off-diagonal306

Yukawa couplings only affect exotic Higgs decays. In the limit where fermionic couplings307

are flavor blind, 9 parameters are enough to describe leading order EFT corrections to308

the current Higgs signal strength measurements at the LHC.309

The full Lagrangian in the Higgs basis is given by310

LHiggs Basis = LSM + LD=6
kinetic + LD=6

vertex + LD=6
dipole + LD=6

hvv + LD=6
hff

+ LD=6
hdvff + LD=6

hvff + LD=6
v3 + LD=6

v4 + LD=6
d2v4 + LD=6

h3 + LD=6
hhff + LD=6

4f

+ Lother. (3.33)

Here, Lother contains additional interactions terms: quartic and higher Higgs boson self-311

interactions, interactions of 3 Higgs bosons with fermion fields, couplings of a single Higgs312

boson to 3 or more gauge bosons, etc. These are not listed in this note because they313

are currently relevant neither for electroweak precision tests nor for single and double314

Higgs production and decay. If necessity or interest arises, these additional terms can315

be easily calculated and added to this note.316

We conclude with a number of comments.317

• The relations between independent and dependent couplings in Eq. (3.5), Eq. (3.11),318

Eq. (3.18), Eq. (3.28) are consequences of the linear realization of electroweak sym-319

metry breaking at the level of dimension-6 EFT operators. They are an essential320

part of the definition of the Higgs basis. If the independent and dependent cou-321

plings were unrelated, then LHiggs Basis would not be a dimension-6 basis but would322

belong to a more general class of theories. Such theories are outside of the scope of323

this note, however they will be discussed in the framework of the extended kappa324

formalism.325

• The independent couplings in Eq. (3.3) are probed by precision measurements of Z326

and W production and decays at LEP. In particular, assuming vertex corrections327

are flavor blind, all the independent couplings in Eq. (3.3) are constrained to be328

smaller than O(10−3) (for the leptonic vertex corrections and δm ≡ δmW/mW ),329

or O(10−2) (for the quark vertex corrections) [2, 4, 11]. Dropping the assumption330

of flavor blindness, all the leptonic, bottom and charm quark vertex corrections331

are still constrained, in a model-independent way, at the level of O(10−2) or better332

[12]. These constraints imply these couplings are too small to have any measurable333

effects at the LHC, therefore we recommend to impose the electroweak bounds on334

such constraints before analyzing LHC data. The 1st generation quark vertex cor-335

rections are less constrained in a model-independent way, though one combination336
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of them is tightly constrained by measurements of the hadronic Z decays at LEP.337

Furthermore, the top quark vertex corrections are poorly constrained (at the O(1)338

level) by experiment, especially the right-handed top couplings to Z. If feasible,339

the light quark and top couplings should be considered as free parameters in ex-340

perimental analyses at the LHC, as this may provide new valuable information to341

constrain these couplings.342

• The Higgs basis is convenient for extracting constraints on dimension-6 operators343

from Higgs and electroweak precision data. However, it may not be the opti-344

mal basis for some other applications. In particular, computing renormalization345

group running of the couplings or matching to concrete BSM model may be more346

straightforward in the language of SU(3)× SU(2)× U(1) invariant operators.347

• Customarily, the SM electroweak parameters are extracted from α(0), mZ and GF .348

One could also use mW instead of GF , as suggested in Ref. [2]. This formalism349

leads to the same relations between the independent and dependent couplings as350

written down here, except that δm = 0 by definition, and that c′`` defined in351

Eq. (3.30) becomes an independent couplings. The downside of this formalism is352

that the SM predictions for all observables would have to be recalculated, as all353

existing high-precision calculations use GF as an input.354

• The number of independent couplings in Eq. (3.9) relevant for Higgs observables355

is still large. At the early stages of the LHC run-2 it may be reasonable to em-356

ploy simplified analyses with a smaller number of parameters. There are several357

motivated assumptions about the underlying UV theory that reduce the number358

of parameters:359

– Flavor universality, in which case the matrices mfδyf and sinφf reduce to a360

single number for each f = u, d, e.361

– Minimal flavor violation, in which case the dominant entries in δyf are [δyu]33362

and [δyd]33, while other diagonal entries are suppressed by the respective mass363

square ratio.364

– CP conservation, in which case all CP-odd couplings vanish: c̃i = 0 = sinφf .365

– Custodial symmetry, in which case δm = 0.3366

We stress that independent couplings should not be arbitrarily set to zero with-367

out an underlying symmetry assumption. Furthermore, the relations between the368

dependent and independent couplings should be consistently imposed, so as to369

preserve the weak SU(2) local symmetry.370

• The independent couplings are formally of order v2/Λ2, where Λ is the scale of371

new physics. For completeness, it is important to define the range of independent372

couplings such that the EFT description is valid. The rule of thumb is that this is373

3Custodial symmetry implies several relations between Higgs couplings to gauge bosons: δcw = δcz,
cw2 = c2θcz2 + s2θcγ2, cww = czz + 2s2θczγ + s4θcγ , and c̃ww = c̃zz + 2s2θ c̃zγ + s4θ c̃γ . The last three are
satisfied automatically at the level of dimension-6 Lagrangian, while the first one is true for δm = 0,
see Eq. (3.11).
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the case for |ci| . 1; more sophisticated criteria will be worked out in the future374

when specific Higgs processes are discussed.375

4 Map to Warsaw Basis of Dimension-6 Operators376

We turn to discussing the map between the independent couplings introduced in Sec-377

tion 3 and coefficients of dimension-6 operators in the electroweak basis before elec-378

troweak symmetry breaking. The complete set of dimension-6 operators can be written379

in many different equivalent bases which are related by the use of equations of motion380

and integration by parts. Here we work with the so-called Warsaw basis of Ref. [5, 10],381

which is distinguished by the simplest tensor structure of the higher-dimensional oper-382

ators. The analogous procedure can be applied to other bases.383

The Lagrangian in the Warsaw basis is given by4
384

Lwarsaw = LSM +
1

v2

∑
i

ciOi, (4.1)

where the SM Lagrangian LSM was introduced in Section 2, and the dimension-6 oper-385

ators Oi are summarized in Table 1.386

To map the coefficients of dimension-6 operators into the independent couplings in387

Eq. (3.3) and Eq. (3.9) , we need first to bring Lwarsaw into the same form as LHiggs Basis388

in Eq. (3.33). This can be achieved by a series of transformations using equations of389

motion, integration by parts, and rescaling of the fields and couplings. To begin with,390

the operator OWB leads to a kinetic mixing between the hypercharge and SU(2) gauge391

bosons, OWB → −1/2gg′W 3
µνBµν . To get rid of it, we use the equations of motion:392

∂νBνµ = g′
(v + h)2

4

(
gW 3

µ − g′Bµ

)
− g′jYµ ,

∂νW
3
νµ = −g (v + h)2

4

(
gW 3

µ − g′Bµ

)
− gj3

µ − gε3jkW j
νW

k
νµ, (4.2)

where jYµ =
∑

f Yf f̄γµf , and j3
µ = q̄γµT

3PLq + ¯̀γµT
3PL`. Using this,393

−cWB
gg′

2
W 3
µνBµν → cWBe

2

[
(v + h)2

4

(
gW 3

µ − g′Bµ

)2 − gW 3
µj

Y
µ − g′Bµj

3
µ

− g
2

2g′
ε3jkW j

µW
k
νBµν − g′ε3jkBµW

j
νW

k
νµ

]
= cWBe

2

[
(g2 + g′2)(v + h)2

4
Z2
µ − eAµjem

µ +
√
g2 + g′2Zµ

(
j3
µ − c2

θj
em
µ

)]
+ icWB

g2g′

(g2 + g′2)3/2

[
g2(gAµν − g′Zµν)W+

µ W
−
ν

−g′2(gAµ − g′Zµ)(W+
µνW

−
ν −W−

µνW
+
ν )
]
, (4.3)

4We use a different notation than the original reference. We also replaced the operator |H†DµH|2 by
(H†DµH −DµH

†H)2. For Yukawa-type operators Of we subtracted v2 so that these operators do not
contribute to off-diagonal mass terms. This way we avoid tedious rotations of the fermion fields to bring
them back to the mass eigenstate basis. Starting with the Yukawa couplings −Hf̄ ′R(Y ′

f + c′fH
†H/v2)f ′L

we can bring them to the form in Eq. (2.1) and Table 1 by defining f ′L,R = UL,RfL,R, cf = U†
Rc

′
fUL,

Yf = U†
R(Y ′

f + c′f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.
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where jem
µ = j3

µ + jYµ is the electromagnetic current. Next, the operators OBB, OWW ,394

and OGG change the normalization of the kinetic terms of the gauge bosons. To recover395

the canonical normalization we redefine the gauge fields as396

Bµ → Bµ

(
1 +

cBBg
′2

4

)
, W i

µ → W i
µ

(
1 +

cWWg
2

4

)
, Ga

µ → Ga
µ

(
1 +

cGGg
2
s

4

)
. (4.4)

We ignore here the contribution of the operator ÕGG to the QCD θ-term (we can always397

assume it cancels agains the θ-term in the SM Lagrangian, or is dynamically removed398

by an axion field). The operator OH changes the normalization of the Higgs boson399

kinetic term, and also induces Higgs boson self-interactions that contain two derivatives.400

To recover the canonical normalization and remove the 2-derivative self-interactions we401

redefine the Higgs field as402

h→ h

(
1− cH −

h

v
cH −

h2

3v2
cH

)
. (4.5)

The relation between the Higgs VEV v0 and the mass parameter in the SM Lagrangian403

is affected by the O6H operator:404

v2
0 =

µ2
H

λ

(
1 +

3

4λ
c6H

)
, (4.6)

while the relation between Higgs boson mass and the quartic coupling in the SM La-405

grangian is affected by both O6H and OH :406

m2
h = 2v2

0

(
λ− 2cHλ−

3

2
c6H

)
. (4.7)

We have to make sure that the gauge couplings and the Higgs VEV have the same407

meaning as in the SM. This is a non-trivial requirement, because dimension-6 operators408

affect the observables used to extract these parameters. We have seen that the operator409

OWB shifts the electric charge and the Z boson mass. Similarly, the operator OT shifts410

the Z boson mass term. Furthermore, one of the O`` operators leads to the 4-fermion411

coupling v−2[c``]1221(ν̄µ,Lγρνe,L)(ēLγρµL) that contributes to the muon decay at the linear412

level and thus shifts the Fermi constant. Finally, the leptonic vertex operator OH` also413

shifts the Fermi constant. To undo these effects, we need to ensure that the photon and414

the gluon couple to the electromagnetic and strong currents as in Eq. (2.3). Furthermore,415

the Z boson mass term in the Lagrangian should be as in Eq. (2.2), and the tree-level416

µ→ eν̄eνµ decay width should be given by Γ =
m5
µ

384π3v4
. This is achieved by the following417

redefinition of the coupling constants and the VEV:418

gs → gs

(
1− cGG

g2
s

4

)
,

g → g

(
1− cWW

g2

4
− cWB

g2g′2

g2 − g′2
+ (cT − δv)

g2

g2 − g′2

)
,

g′ → g′
(

1− cBB
g′2

4
+ cWB

g2g′2

g2 − g′2
− (cT − δv)

g′2

g2 − g′2

)
,

v0 → v (1 + δv) , (4.8)
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where δv = ([c′H`]11 + [c′H`]22)/2− [c``]1221/4.419

One last transformation is needed to match the Higgs basis. At this point, the420

coefficients of the contact interactions in Eq. (3.17) differ from the vertex corrections421

by flavor universal terms depending only on the electric charge and the isospin of the422

fermions. It is possible to get rid of the latter using equations of motion for the gauge423

bosons, so as to traded them into zero- and two-derivative Higgs boson interactions with424

gauge bosons of the form hVµVµ and hVµ∂νVµν .425

After all these transformations the Lagrangian takes the same form as LHiggs Basis.426

The dictionary between the coefficients of dimension-6 operators and the independent427

and dependent couplings in LHiggs Basis goes as follows. The shift of the W boson mass428

is given by429

δm =
1

g2 − g′2
[
−g2g′2cWB + g2cT − g′2δv

]
. (4.9)

The shift of W and Z boson couplings to leptons are given by430

δgW`
L = c′H` + f(1/2, 0)− f(−1/2,−1),

δgZνL =
1

2
c′H` −

1

2
cH` + f(1/2, 0),

δgZeL = −1

2
c′H` −

1

2
cH` + f(−1/2,−1),

δgZeR = −1

2
cHe + f(0,−1), (4.10)

where431

f(T 3, Q) = I3

[
−QcWB

g2g′2

g2 − g′2
+ (cT − δv)

(
T 3 +Q

g′2

g2 − g′2

)]
, (4.11)

and I3 is the 3 × 3 identity matrix. Vertex corrections to W and Z boson couplings to432

quarks are given by433

δgWq
L = c′Hq + f(1/2, 2/3)− f(−1/2,−1/3),

δgWq
R = −1

2
cHud,

δgZuL =
1

2
c′Hq −

1

2
cHq + f(1/2, 2/3),

δgZdL = −1

2
c′Hq −

1

2
cHq + f(−1/2,−1/3),

δgZuR = −1

2
cHu + f(0, 2/3),

δgZdR = −1

2
cHd + f(0,−1/3). (4.12)

The coefficients of vertex-like contact interactions between the Higgs boson, W or Z434

boson, and two fermions in Eq. (3.17) are given by435

cV f = δgV f . (4.13)

The shifts of the Higgs couplings to W and Z are given by436

δcw = −cH − cWB
4g2g′2

g2 − g′2
+ 4cT

g2

g2 − g′2
− δv3g2 + g′2

g2 − g′2
,

δcz = −cH − 3δv. (4.14)
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The two-derivative Higgs couplings to gauge bosons are given by437

cgg = cGG, c(2)
gg = cGG,

cγγ = cWW + cBB − 4cWB,

czz =
g4cWW + g′4cBB + 4g2g′2cWB

(g2 + g′2)2
,

cz2 = − 2

g2
(cT − δv) ,

czγ =
g2cWW − g′2cBB − 2(g2 − g′2)cWB

g2 + g′2
,

cγ2 =
2

g2 − g′2
(
(g2 + g′2)cWB − 2cT + 2δv

)
,

cww = cWW ,

cw2 =
2

g2 − g′2
(
g′2cWB − cT + δv

)
.

(4.15)

and the same for the CP-odd couplings c̃gg, c̃γγ, c̃zγ, c̃zz, c̃ww, with c → c̃ on the right438

hand side. The Yukawa interactions are given by439

[δyf ]ij cosφfij =
vRe[cf ]ij√

2mfimfj

− δij (cH + δv) ,

[δyf ]ij sinφfij =
vIm[cf ]ij√

2mfimfj

. (4.16)

The coefficients of Yukawa-type interactions of two Higgs bosons with fermions in Eq. (3.27)440

are given by441

[y
(2)
f ]ij = 3[δyf ]ije

iφij + (cH + 3δv)δij. (4.17)

The anomalous triple gauge couplings of electroweak gauge bosons are given by442

δg1,z =
g2 + g′2

g2 − g′2
(
−g′2cWB + cT − δv

)
,

δκγ = g2cWB,

δκz = −2cWB
g2g′2

g2 − g′2
+
g2 + g′2

g2 − g′2
(cT − δv) ,

λγ = −3

2
g4c3W ,

λz = −3

2
g4c3W ,

κ̃γ = g2c̃WB,

κ̃z = −g′2c̃WB,

λ̃γ = −3

2
g4c̃3W ,

λ̃z = −3

2
g4c̃3W . (4.18)
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The Higgs cubic interaction is given by443

δλ3 = −λ (3cH + δv)− c6H . (4.19)

From these expressions one can derive the relations between dependent and independent444

couplings listed in Section 3.445

To summarize, in the Warsaw basis the parameters affecting electroweak precision446

tests, Higgs production (single or double) and Higgs decay are the following447

cH , cT , cGG, cWW , cBB, cWB, c̃GG, c̃WW , c̃BB, c̃WB, c3W , c̃3W , c6H ,

c′H`, cH`, cHe, c
′
Hq, cHq, cHu, cHd, cHud

cu, cd, ce,

[c``]12;21. (4.20)

The linear transformation between these parameters and the independent couplings in448

Eq. (3.3), Eq. (3.9), Eq. (3.19), and Eq. (3.25) is given in Eqs. (4.9)-(4.18). In principle,449

one can also perform the LHC analyses in the Warsaw (or any other) basis. One diffi-450

culty is that the electroweak precision constraints, which are transparent in the Higgs451

basis, constrain rather complicated combinations of the parameters in Eq. (4.20). Alter-452

natively, the constraints derived in the Higgs basis can be easily recast into constraints453

in the Warsaw basis using the map Eqs. (4.9)-(4.18), provided that the former are given454

with the full correlation matrix.455

5 Map to SILH Basis of Dimension-6 Operators456

In this section we present the translation between the couplings in the Higgs basis and457

Wilson coefficients of dimension-6 operators in the SILH basis [6, 8]. The Lagrangian458

is written as459

LSILH = LSM +
1

v2

∑
i

siOi. (5.1)

Compared to the Warsaw basis defined in Section 4, the SILH basis of dimension-6460

operators introduces the following nine new operators:461

OW =
ig

2

(
H†σi

←→
DµH

)
DνW

i
µν ,

OB =
ig′

2

(
H†
←→
DµH

)
∂νBµν ,

OHW = ig
(
DµH

†σiDνH
)
W i
µν ,

OHB = ig′
(
DµH

†DνH
)
Bµν ,

OH̃W = ig
(
DµH

†σiDνH
)
W̃ i
µν ,

OH̃B = ig′
(
DµH

†DνH
)
B̃µν ,

O2W = DµW
i
µνDρW

i
ρν ,

O2B = ∂µBµν∂ρBρν ,

O2G = DµG
a
µνDρG

a
ρν . (5.2)
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Consequently, in order to have a non-redundant set of operators, 9 operators present462

in the Warsaw basis must be absent in the SILH basis. The absent ones are 4 bosonic463

operators OWW , O
W̃W

, OWB, OW̃B, 2 vertex operators [OH`]11, [O′H`]11, and 3 four-464

fermion operators [O``]12;21, [O``]11;22, [O′uu]33;33. The remaining operators are the same465

as in the Warsaw basis, and we use the normalizations in Table 1, which are often466

different than in Refs. [6, 8].5467

One way to derive the translation is to first transform the operators in Eq. (5.2) to468

the Warsaw basis using integration by parts, Fierz transformations, and the equations469

of motion:470

∂νBµν =
ig′

2
H†
←→
DµH + g′

∑
f=q,`

Yf f̄LγµfL + g′
∑

f=u,d,e

Yf f̄RγµfR,

DνW
i
µν =

ig

2
H†σi

←→
DµH +

g

2

∑
f=q,`

f̄Lσ
iγµfL,

DνG
a
µν = gsq̄LT

aγµqL + gs
∑
f∈u,d

q̄RT
aγµqR. (5.3)

5The original references do not discuss the flavor structure explicitly, and the flavor indices of the
absent operators are not specified. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Using these, one can obtain:471

OHB = OB −
1

4
OWB −OBB,

OHW = OW −
1

4
OWB −OWW ,

OH̃B = −1

4
OW̃B −OB̃B,

OH̃W = −1

4
OW̃B −OW̃W

,

OB = g′2

[
−1

4
OT +

1

2

∑
f∈q,u,d,`,e

Yf
∑
i

[OHf ]ii

]
,

OW = g2

[
−1

4
OH +OHD +

1

4

∑
f∈q,`

∑
i

[O′Hf ]ii

]
,

O2B = g′2

[
−1

4
OT +

∑
f∈q,u,d,`,e

Yf
∑
i

[OHf ]ii +
∑

f1f2∈q,u,d,`,e

Yf1Yf2
∑
i,j

[Of1f2 ]ii;jj

]
,

O2W = g2

[
−1

4
OH +OHD +

1

2

∑
f∈q,`

∑
i

[O′Hf ]ii

+
∑
ij

(
1

2
[O``]ij;ji −

1

4
[O``]ii;jj +

1

2
[O`q]ii;jj +

1

4
[Oqq]ii;jj

)]
,

O2G = g2
s

∑
i,j

[
1

4
[O′qq]ij;ji +

1

4
[Oqq]ij;ji −

1

6
[Oqq]ii;jj + 2[O′qu]ii;jj + 2[O′qd]ii;jj

+ 2[O′ud]ii;jj +
1

2
[O′uu]ij;ji −

1

6
[O′uu]ii;jj +

1

2
[O′dd]ij;ji −

1

6
[O′dd]ii;jj

]
. (5.4)

The operator OHD = |H|2|DµH|2 appearing above is present neither in the Warsaw nor472

in the SILH basis. One can remove it from the Lagrangian by rescaling the Higgs field473

and the Yukawa couplings as H → H(1 + ε|H|2/v2), yf → yf (1− ε/2). To lowest order474

in ε, this rescaling generates the following terms in the Lagrangian475

∆L = ε

(
2OHD +OH − 4λO6H +

∑
f∈u,d,e

∑
i

[yf ]ii[Of ]ii

)
. (5.5)

Thus, to get rid of the OHD operator generated by the transformation from the SILH476

to the Warsaw basis we need to choose ε = −g2(sW + sHW + s2W )/2. Effectively, this477

amount to replacing in Eq. (5.4):478

OHD → −
1

2
OH + 2λO6H −

1

2

∑
f∈u,de

∑
i

[yf ]ii[Of ]ii. (5.6)

We are ready to give the translation between the Wilson coefficient in the SILH and479
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Warsaw basis:480

cH = sH −
3g2

4
(sW + sHW + s2W ) ,

cT = sT −
g′2

4
(sB + sHB + s2B) ,

c6H = s6H + 2λg2 (sW + sHW + s2W ) ,

cWB = −1

4
(sHB + sHW ) ,

cBB = sBB − sHB,
cWW = −sHW ,

c̃WB = −1

4
(s̃HB + s̃HW ) ,

c̃BB = s̃BB − s̃HB,
c̃WW = −s̃HW , (5.7)

481

[cHf ]ij = [sHf ]ij +
g′2Yf

2
(sB + sHB + 2s2B) δij,

[c′Hf ]ij = [s′Hf ]ij +
g2

4
(sW + sHW + 2s2W ) δij, (5.8)

482

[cf ]ij = [sf ]ij − δijg2[yf ]ii
sW + sHW + s2W

2
, (5.9)

483

[c``]ii;ii = [s``]ii;ii +
1

4

(
g′2s2B + g2s2W

)
,

[c``]ii;jj = [s``]ii;jj +
1

2

(
g′2s2B − g2s2W

)
, i < j,

[c``]ij;ji = [s``]ij;ji + g2s2W , i < j, (5.10)

where it is implicit that [sH`]11 = [s′H`]11 = [s``]12;21 = [s``]11;22 = 0. For the 4-lepton484

operators one should take into account that [O``]ji;ij ≡ [O``]ij;ji and [O``]jj;ii ≡ [O``]ii;jj.485

The translation of other 4-fermion Wilson coefficients apart from the one in Eq. (5.10)486

can be easily derived from Eq. (5.4), but it will not be needed in the following. For the487

Wilson coefficients not listed above the translation is trivial: ci = si.488

Given these relations between the Warsaw and SILH basis Wilson coefficients and489

using the results of Section 4, we can derive the translation between the Higgs basis490

couplings and the SILH basis Wilson coefficients:491

δm = − g2g′2

4(g2 − g′2)

(
sW + sB + s2W + s2B −

4

g′2
sT +

2

g2
[s′H`]22

)
, (5.11)

492

f̂(T 3, Q) ≡ 1

4

[
g2s2W + g′2s2B + 4sT − 2[s′H`]22

]
T 3

+
g′2

4(g2 − g′2)

[
−(2g2 − g′2)s2B − g2(s2W + sW + sB) + 4sT − 2[s′H`]22

]
Q,

(5.12)
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493

δgZνL =
1

2
s′H` −

1

2
sH` + f̂(1/2, 0),

δgZeL = −1

2
s′H` −

1

2
sH` + f̂(−1/2,−1),

δgZeR = −1

2
sHe + f̂(0,−1),

δgZuL =
1

2
s′Hq −

1

2
sHq + f̂(1/2, 2/3),

δgZdL = −1

2
s′Hq −

1

2
sHq + f̂(−1/2,−1/3),

δgZuR = −1

2
sHu + f̂(0, 2/3),

δgZdR = −1

2
sHd + f̂(0,−1/3),

δgW`
L = s′H` + f̂(1/2, 0)− f̂(−1/2,−1),

δgWq
L = s′Hq + f̂(1/2, 2/3)− f̂(−1/2,−1/3),

δgWq
R = −1

2
sHud, (5.13)

494

cV f = δgV f , (5.14)
495

δcw = −sH −
g2g′2

g2 − g′2

[
sW + sB + s2W + s2B −

4

g′2
sT +

3g2 + g′2

2g2g′2
[s′H`]22

]
,

δcz = −sH −
3

2
[s′H`]22,

cgg = sGG,

cγγ = sBB,

czz = − 1

g2 + g′2
[
g2sHW + g′2sHB − g′2s2

θsBB
]
,

cz2 =
1

2g2

[
g2(sW + sHW + s2W ) + g′2(sB + sHB + s2B)− 4sT + 2[s′H`]22

]
,

czγ =
sHB − sHW

2
− s2

θsBB,

cγ2 =
sHW − sHB

2
+

1

g2 − g′2
[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

cww = −sHW ,

cw2 =
sHW

2
+

1

2(g2 − g′2)

[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
, (5.15)

496

[δyf ]ij cosφfij =
vRe[cf ]ij√

2mfimfj

− δij
[
sH +

3g2

4
(sW + sHW + s2W ) +

1

2
[s′H`]22

]
,

[δyf ]ij sinφfij =
vIm[sf ]ij√

2mfimfj

. (5.16)
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497

δλ3 = −λ
(

3sH +
1

2
[s′H`]22

)
− s6H , (5.17)

498

δg1z = − g2 + g′2

4(g2 − g′2)

[
(g2 − g′2)sHW + g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

δκγ = −g
2

4
[sHW + sHB] ,

δκz = −1

4

(
g2sHW − g′2sHB

)
− g2 + g′2

4(g2 − g′2)

[
g2(sW + s2W ) + g′2(sB + s2B)− 4sT + 2[s′H`]22

]
,

λz = −3

2
g4s3W , λγ = λz,

δκ̃γ = −g
2

4
[s̃HW + s̃HB] ,

δκ̃z =
g′2

4
[s̃HW + s̃HB] ,

λ̃z = −3

2
g4s̃3W , λ̃γ = λ̃z. (5.18)

A Dictionary499

In this section we give a translation between the Higgs basis parameters and other EFT500

formalisms used in the literature, keeping all the normalization and conventions as in501

the original references. On request, translation to other formalisms may be added in the502

future.503

A.1 HISZ basis504

To describe the di-boson production, Ref. [13] proposes to use the following 5 operators:505

ÔWW = Tr [WµνWνρWρµ] ,

ÔW = DµH
†WµνDµH,

ÔB = DµH
†BµνDµH,

Ô
W̃W

= Tr
[
WµνWνρW̃ρµ

]
,

ÔW̃ = DµH
†W̃µνDµH. (A.1)

This is a subset of operators considered by Hagiwara et al. (HISZ) in Ref. [9]. The506

dimension-6 Lagrangian contains507

LD=6 ⊃ 1

Λ2

(
dWW ÔWW + dW ÔW + dBÔB + d̃WW ÔW̃W

+ d̃W ÔW̃

)
. (A.2)

These 5 operators contribute to the TGCs and Higgs couplings, but they do not con-508

tribute to oblique or vertex corrections. Thus, they are not strongly constrained by509

electroweak precision tests, and therefore represent a perfectly fine parameterization of510

EFT new physics in di-boson production.511
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One should remember that the covariant derivatives in Refs. [9, 13] are defined with512

the opposite sign than here. This amounts to rescaling the gauge fields as Wµ → −Wµ,513

Bµ → −Bµ in the translation. Then the electroweak field strength tensors defined in514

Ref. [13] are related to the ones used here by515

Bµν → −
i

2
g′Bµν , Wµν → −

i

2
gσiW i

µν . (A.3)

This allows us to relate516

ÔWW = −1

4
O3W , ÔW = −1

2
OHW , ÔB = −1

2
OHB,

Ô
W̃W

= −1

4
O3̃W , ÔW̃ = −1

2
OH̃W . (A.4)

where Oi on the right-hand side are operators in the SILH basis in the normalization of517

Section 5. Thus, the map between the HISZ and SILH coefficients is the following:518

s3W = −1

4

v2

Λ2
dWW , sHW = −1

2

v2

Λ2
dW , sHB = −1

2

v2

Λ2
dB,

s̃3W = −1

4

v2

Λ2
d̃WW , s̃HW = −1

2

v2

Λ2
d̃W . (A.5)

The anomalous TGCs and the HISZ basis Wilson coefficients are related by:519

δg1z =
g2 + g′2

8

v2

Λ2
dW

δκγ =
g2

8

v2

Λ2
(dW + dB) , δκ̃γ =

g2

8

v2

Λ2
d̃W

λz =
3g4

8

v2

Λ2
dWW , λ̃z =

3g4

8

v2

Λ2
d̃WW . (A.6)

Inverting these formulas, the relation between the Wilson coefficients in the HISZ basis520

and the Higgs basis parameters reads521

dWW =
8Λ2

3g4v2
λz,

dW = − 4Λ2

(g2 − g′2)v2

[
g2cz2 + g′2czz − s2

θe
2cγγ − s2

θ(g
2 − g′2)czγ

]
,

dB =
4Λ2

(g2 − g′2)v2

[
g2cz2 + g2czz − c2

θe
2cγγ − c2

θ(g
2 − g′2)czγ

]
,

d̃WW =
8Λ2

3g4v2
λ̃z,

d̃W =
8Λ2

g2v2
δκ̃γ. (A.7)
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H4D2 and H6

OH
[
∂µ(H†H)

]2
OT

(
H†
←→
DµH

)2

O6H (H†H)3

f2H3

Oe −(H†H − v2

2 )ēH†`

Ou −(H†H − v2

2 )ūH̃†q

Od −(H†H − v2

2 )d̄H†q

V 3D3

O3G g3
sf

abcGaµνG
b
νρG

c
ρµ

O
3̃G

g3
sf

abcG̃aµνG
b
νρG

c
ρµ

O3W g3εijkW i
µνW

j
νρW k

ρµ

O
3̃W

g3εijkW̃ i
µνW

j
νρW k

ρµ

V 2H2

OGG
g2s
4 H

†H GaµνG
a
µν

O
G̃G

g2s
4 H

†H G̃aµνG
a
µν

OWW
g2

4 H
†HW i

µνW
i
µν

O
W̃W

g2

4 H
†H W̃ i

µνW
i
µν

OBB
g′2

4 H
†H BµνBµν

O
B̃B

g′2

4 H
†H B̃µνBµν

OWB gg′H†σiHW i
µνBµν

O
W̃B

gg′H†σiH W̃ i
µνBµν

f2H2D

OH` i¯̀γµ`H
†←→DµH

O′H` i¯̀σiγµ`H
†σi
←→
DµH

OHe iēγµēH
†←→DµH

OHq iq̄γµqH
†←→DµH

O′Hq iq̄σiγµqH
†σi
←→
DµH

OHu iūγµuH
†←→DµH

OHd id̄γµdH
†←→DµH

OHud iūγµdH̃
†DµH

f2V HD

OeW g ¯̀σµνeσ
iHW i

µν

OeB g′ ¯̀σµνeHBµν

OuG gsq̄σµνT
auH̃ Gaµν

OuW gq̄σµνuσ
iH̃ W i

µν

OuB g′q̄σµνuH̃ Bµν

OdG gsq̄σµνT
adH Gaµν

OdW gq̄σµνdσ
iHW i

µν

OdB g′q̄σµνdH Bµν

(L̄L)(L̄L) and (L̄R)(L̄R)

O`` (¯̀γµ`)(¯̀γµ`)

Oqq (q̄γµq)(q̄γµq)

O′qq (q̄γµσ
iq)(q̄γµσ

iq)

O`q (¯̀γµ`)(q̄γµq)

O′`q (¯̀γµσ
i`)(q̄γµσ

iq)

Oquqd (q̄ju)εjk(q̄
kd)

O′quqd (q̄jT au)εjk(q̄
kT ad)

O`equ (¯̀je)εjk(q̄
ku)

O′`equ (¯̀jσµνe)εjk(q̄
kσµνu)

O`edq (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee (ēγµe)(ēγµe)

Ouu (ūγµu)(ūγµu)

Odd (d̄γµd)(d̄γµd)

Oeu (ēγµe)(ūγµu)

Oed (ēγµe)(d̄γµd)

Oud (ūγµu)(d̄γµd)

O′ud (ūγµT
au)(d̄γµT

ad)

(L̄L)(R̄R)

O`e (¯̀γµ`)(ēγµe)

O`u (¯̀γµ`)(ūγµu)

O`d (¯̀γµ`)(d̄γµd)

Oqe (q̄γµq)(ēγµe)

Oqu (q̄γµq)(ūγµu)

O′qu (q̄γµT
aq)(ūγµT

au)

Oqd (q̄γµq)(d̄γµd)

O′qd (q̄γµT
aq)(d̄γµT

ad)

Table 1: A complete, non-redundant set of baryon-and-lepton-number-conserving
dimension-6 operators built from SM fields [5]. In this table, e, u, d are always right-
handed fermions, while ` and q are left-handed. A flavor index is implicit for each fermion
field. For complex operators the complex conjugate operator is implicit. Including the
flavor structure and complex conjugates, this table contains 2499 distinct operators [10].
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