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1 Introduction

The LHC Higgs Cross Section Working Group is focused on various steps of the analysis
chain:

Data — Pseudo-observables — Model-independent EFT — BSM Models .

This note concerns model-independent interpretations of the data in the framework of
effective field theory (EFT) beyond the Standard Model (SM), which is a part of the
scope of the Working Group 2. The purpose of this note is to propose a common EFT
language and conventions that could be universally used in LHC Higgs analyses and be
implemented in numerical tools.

In the EFT approach, the basic assumption is that the mass scale A of new particles
in the UV theory beyond the SM is larger than the electroweak scale v, A > v. If
this is the case, physics at energies £ < A can be parametrized by the SM Lagrangian
supplemented by a set of higher-dimensional operators. These operators are constructed
out of the SM fields, and respect the local SU(3) x SU(2) x U(1) symmetry of the SM.
The coefficients of d > 4-dimensional operators in the EFT Lagrangian are of order
1/A%* and their contribution to amplitudes of physical processes at the energy scale of
order v scales! as (v/A)?*. The leading new physics effects are expected from operators
with d = 6 whose effects scale as (v/A)? (all dimension-5 operators violate the lepton
number; experimental constraints dictate that their coefficients must be suppressed at
the level unobservable at the LHC). Since (v/A)? < 1 by construction, EFT is suitable
to describe small deviations from the SM predictions, except for observables that vanish
or are suppressed by small parameters in the SM.

L Apart from the scaling with A, the effects of higher-dimensional operators also scale with appropriate
powers of couplings in the UV theory. The latter may be important to assess the validity range of the
EFT description.
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An operator basis is a complete, non-redundant set of dimension-6 operators. Com-
plete means that any dimension-6 operator is either a part of the basis, or can be obtained
from a combination of operators in the basis using equations of motion, integration by
parts, field redefinitions, and Fierz transformations. Non-redundant means it is a mini-
mal such set. Any basis leads to the same physical predictions concerning possible new
physics effects. Several bases have been proposed in the literature, and they may be
convenient for specific applications. In this note we propose a basis that is particularly
convenient for LHC Higgs analyses.

Preparing this proposal, we have taken into account the following guidelines:

- The formulation should be simple enough that it can be used by people not ac-
quainted with the nuts and bolts of EFTs.

- The relationship between parameters of the EFT and (pseudo)-observables should
be transparent.

- The constraints on EFT parameters from electroweak precision observables should
be easy to impose.

- The formalism should be easily implementable in Monte-Carlo codes.

- The formalism should be flexible enough, such that, in the future, the application
scope may be extended beyond the original one. In particular, the formalism should
be applicable outside Higgs physics and allow one to also combine non-LHC data.

- A connection to the pseudo-observables in the extended kappa formalism should
be straightforward.

- Limits of the EFT validity range should be easy to define.

- The formalism should be well suited to include higher-order QCD and electroweak
corrections.

The salient features of our proposal are the following:

e We restrict ourselves to EFT with dimension-6 operators in the linear formulation
of electroweak symmetry breaking (in other words, the Higgs boson belongs to a
doublet of the weak SU(2) group).

e In the spirit of Ref. [1], we proceed with a classification of the operators that more
easily map to independent interaction terms of the SM mass eigenstates, in par-
ticular the W, Z, and the Higgs boson. Such interaction terms are invariant under
SU(3) x U(1) color and electromagnetic symmetry, but they do not necessarily
correspond to SU(2)-invariant operators. However, they allow us to identify a set
of independent couplings from which a complete basis of SU(2)-invariant terms
is constructed. We denote the latter the Higgs basis. The advantage of this for-
mulation is that the effective couplings are related in a simpler way to quantities
observable in experiments, compared to other proposals.
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e We choose the independent couplings such that the constraints from the Z and W
partial decay widths (measured with a per-mille precision by the LEP experiment)
can be easily incorporated. These are among the most stringent constraints on
EFT parameters, and they have an important impact on possible signals in Higgs
searches. It is unlikely that, at any point in the future, the precision of LHC
Higgs searches will be such that the couplings constrained by LEP can be probed
by the LHC with a comparable accuracy. Therefore it is recommended that the
the electroweak constraints on Z and W boson couplings to fermions are always
imposed when analyzing LHC data, especially on Higgs physics. Other precision
observables, such as WW production or off-shell fermion scattering, lead to less
stringent constraints that are not discussed in this note (see e.g. [2, 3, 4] for a
recent discussion).

e The disadvantage of the Higgs basis is that the operator list is cumbersome, be-
ing defined by the identification of a set of independent interaction terms after
electroweak symmetry breaking. For this reason, we also map the Higgs basis to
a set of manifestly SU(3) x SU(2) x U(1) invariant operators before electroweak
symmetry breaking. For the latter, in this note we use operators in the Warsaw
basis of Ref. [5], but it is straightforward to work out a map to any other basis used
in the literature. Working with SU(3) x SU(2) x U(1) invariant operators may be
more convenient for certain calculations (for example, when renormalization group
running of the Wilson coefficients needs to be calculated).

e We do not demand that the dimension-6 operators are flavor blind. While generic
constraints on flavor violation are strong, it is plausible that there is a large hier-
archy between the coefficients of dimension-6 operators corresponding to different
fermion generations. In particular, many models predict the coefficients of opera-
tors involving the 3rd generation to be much larger than those involving the first
two generations. Keeping the more general approach will allow us to obtain much
more robust constraints on new physics.

e We allow CP violating operators to be present in our basis. In particular, we
discuss the most general set of Higgs couplings to matter that include CP violating
couplings.

e We assume that dimension-6 operators conserve the baryon and lepton number.

In Section 2, to define our notation and conventions, we write down the Standard
Model (SM) Lagrangian. In Section 3 we define the Higgs basis, which is the basis we
propose for LHC Higgs analyses. The dictionary between the independent couplings
and Wilson coefficients of SU(3) x SU(2) x U(1) invariant dimension-6 operators in the
Warsaw basis is worked out in Section 4.
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2 Standard Model Lagrangian

The SM Lagrangian in our notation takes the form

1 1 . : 1
LM = _ZGZVGZV N ZW;VWZV N ZB#VBW + Dy H'DyH + iy H'H — \(H'H)?*
+ Z Z']FL’}/#D;LJCL + Z if_R'VuDufR
fEq,l feude
— [I:[TﬂRyqu + HTJRdeCTKMQL + HTéRyeZL + hC] . (21)

Here, G, W, and B, denote the gauge fields of the SU(3) x SU(2) x U(1) local

w
symmetry. The corresponding gauge couplings are denoted by g5, g, ¢’; we also define the

electromagnetic coupling e = gg'/1/¢? + ¢’?, and the Weinberg angle sy = ¢'/+/ g% + ¢'%.
The field strength tensors are defined as G, = 9,G}, — 9,G, + gs f“bCGZG,c,, Wi, =
W) — W), + ge"WIWE, B, = 0,B, — 9,B,. The Higgs doublet is denoted as
H, and we also define H; = ¢;H;. Tt acquires the vacuum expectation value (VEV)
(H'H) = v%/2. In the unitary gauge, H = (0, (v + h)/v/2), where h is the Higgs
boson field. After electroweak symmetry breaking, the electroweak gauge boson mass
cigenstates are defined as W+ = (W' FiW?)/V/2, Z = cyW? — 5B, A = syW?> 4 ¢4 B,
where ¢y = /1 — s3. The tree-level masses of W and Z bosons are given by my = gv/2,
myz = /¢?>+ ¢g’?>v/2. The left-handed Dirac fermions q; = (ur,Vexkmdy) and £, =
(vp,er) are doublets of the SU(2) gauge group, and the right-handed Dirac fermions
ug, dr, eg are SU(2) singlets. All fermions are 3-component vectors in the generation
space, and y; are 3 X 3 matrices. We work in the basis where the fermion mass matrix
is diagonal with real, positive entries. In this basis, y; are diagonal, and the fermion
masses are given by my, = v[ysii/ V2.
For later convenience, we explicitly write down the gauge boson mass terms:

2,2 2 12y, 2
g-v L
LM = TWJWH + < 2,7, (2.2)
the gauge boson couplings to fermions:
L3 =eAy Y Qpfvuf +9:Go Y FuTef, (2.3)
fEu,d,e f€u,d
‘CEJI\“Af = % (W gy, Vexmdr + W, oryuer +he.)
+ VP +9Z0 > (Tt = 550 0)) | (2.4)

f€u,d,e,v
the couplings of the Higgs boson to gauge bosons, fermions, and itself:

h h2 92U2 (92 +g/2)U2 h _ m?2 m?2
SM_ (2, T wtwo e L) | _ "h 3 "hgp4
£ <v+2v2> [ 2 Wil + 4 : “] v;mfff 2vh 8v2h’

(2.5)
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and the triple and quartic self-interactions of the vector bosons:

Loy = de[(WiW, =W, WH A, + A, W, W]
+ igey [(WiW, =W W Z, + 2, WSW, ]
- gsfabcauGgGZGfp (26)

2
£ = L WWIWo W, = WIWWAWS) + g2 (Wi 2, 2, = WiW, 2,7,)
+ ¢ (WIAW, A, -W/ W, AA)
+ GPeoso (W, Z W, A, + WHAW, Z, - 2WiW, Z,A,)
— GGG GG, (2.7)

These couplings depend on just 5 input parameters: gs, g, ¢’, m, and v. The Higgs boson
mass my, has been precisely measured at the LHC, while the strong coupling constant
is extracted from jet production data. The remaining 3 parameters are customarily
derived from the observable Fermi constant G (more precisely, from the measured
muon lifetime 7, = 192W3/G%mi), Z boson mass my, and the low-energy electromagnetic
coupling a(0). The tree-level relations between the input observables and the electroweak
parameters are given by:

1  gi@ V9Lt g
Gp=—-, a=—0L% ) _NVILTHY (2.8)
\/§U2 47T(9L +gy) 2

3 Higgs Basis

We present the effective dimension-6 Lagrangian in the linear realization of electroweak
symmetry in a formalism inspired by (but not identical to) Ref. [1]. The goal is to
choose a particular basis of operators that can be more easily connected (at least at
tree-level) to observable quantities in Higgs physics. The basis, which we call the Higgs
basis, is spanned by particular combinations of dimension-6 operators. Each of these
combinations maps to a simple interaction term of the SM mass-eigenstate fields that
can be probed by experiment. The coefficients multiplying these combinations in the
Lagrangian are called the independent couplings. In order to make the Higgs basis
convenient to study Higgs physics, the couplings of W and Z bosons to fermions and
single Higgs couplings to the SM fermions and gauge bosons are chosen among the
independent couplings.

We stress that the Higgs basis should be regarded as one of many possible bases of
the dimension-6 Lagrangian beyond the SM. In particular, the independent couplings
can be related by a linear transformation to parameters defining any other such basis
in the literature, for example the Warsaw [5] or the SILH [6] basis. At the same time,
the independent couplings can be easily connected to Higgs pseudo-observables at the
amplitude level, as defined e.g. in Ref. [7].

By construction, our effective Lagrangian has the following features:

e All kinetic terms of SM mass eigenstates are canonically normalized. In particular,
there is no kinetic mixing between the Z boson and the photon.
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e Tree-level relations between the electroweak parameters and input observables are
the same as the SM ones in Eq. (2.8). In particular, the photon and the gluon
interact with fermions as in Eq. (2.3), and there is no correction to the Z boson
mass term.

e Two-derivative self-interactions of the Higgs boson are absent.

In general, dimension-6 operators do induce corrections to the Lagrangian that do not
respect these features. However, all 3 above features can always be achieved, without
any loss of generality, by using equations of motion, integrating by parts, and redefining
the fields and couplings.

In the complete effective Lagrangian each independent coupling multiplies an inde-
pendent combination of SU(3) x SU(2) x U(1) invariant operators (such combinations
formally define the operator basis). However, we find it more transparent to define
the independent couplings via the interaction terms of SM mass eigenstates in the La-
grangian after electroweak symmetry breaking: see the Section 4 for the expressions
of the independent couplings in terms of Wilson coefficients of SU(3) x SU(2) x U(1)
invariant operators.

Several other Higgs couplings can be expressed by the independent couplings; we
call them the dependent couplings. The relations between dependent and independent
couplings displayed below hold at the level of the dimension-6 Lagrangian, and they are
in general not respected by dimension-8 and higher operators. Of course, the choice
which couplings are independent and which are dependent is subjective and dictated
by convenience. In our case, the independent couplings are more easily mapped to
observables constrained by electroweak precision tests and Higgs searches. However,
other choices can be envisaged and may be more convenient for other applications.

3.1 Kinetic terms

In the Higgs basis, by construction, dimension-6 operators do not introduce corrections
to kinetic of the SM mass eigenstates. The only exception is the (relative) shift of the
W boson mass, which is an independent parameter in our formalism:

Independent : dm. (3.1)

It is defined as a correction to the SM W boson mass in the Lagrangian of Eq. (2.2):

_ 2’[)2
L0ne = 26m*—

Wiw,. (3.2)

While dm is a free parameter from the EFT point of view, precision measurements of
the W mass constrain it to be smaller than 1073.

3.2 Vertex corrections

We choose the following set of independent and dependent vertex corrections:

Independent : dgZe, 6gZc, 6gVt, dgZv, dg&v, 0974, Sg%¢, 5gg/q,
Dependent : Sg%v, 69,9, (3.3)
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where all the dg are 3 x 3 Hermitian matrices in the generation space, except for 5g]1;Vq
who is a general 3 X 3 complex matrix. These parameters are defined via corrections of
the SM' W and Z couplings to fermions in the Lagrangian of Eq. (2.3).

£o=6 = % (W;DL%(SgE/éeL + W ray,bg; Vexmdr + W, iry,09y “dr + h.c.)
+ VP92 | > frndgl fu+ D Frrdgr! fR] (3.4)
f€u,d,e,v f€u,d,e

where the dependent couplings 6gZ”, § ngq can be expressed by the independent couplings
as:
07" =0g7  +ogr",  bgp " =0g7" —bg7". (3.5)

Note that we choose the W couplings to leptons (rather than the Z couplings to neutri-
nos) as our independent couplings, because in the flavor non-universal case the former are
more directly constrained by experiment (in particular, in leptonic W decays measured
at LEP).

The parameters in Eq. (3.3) form a complete set to describe all single on-shell Z and
W decay and production processes within an EFT with linear realization of electroweak
symmetry. They are free parameters from the effective field theory viewpoint but, as we
argue in more detail near the end of this section, they are typically strongly constrained
by precision measurements of Z and W production and decays at LEP.

3.3 Dipole moments

At the dimension-6 level the dipole-type interactions are described by the following
independent and dependent couplings:

Independent : dGu7 de7 dA67 dAu; dAd7 dZe7 dZu7 dZd7
dGu7 de7 dA67 dAu7 dACb dZ67 dZu7 dZd;
Dependent : dwyg, dwq, (3.6)

where all the dy; and dvvf are Hermitian matrices. They are defined by the following
interactions between the gauge boson and fermions:

= 1 r a a r
‘C£;o61e = _E [gs Z fUHVT defG/u/—i_e Z fUquAffAuu

feu,d fEu,d,e

+vg*+ g Z [0udzi f 2 +V2g (doywdwquWV,, + h.c.)

f€u,d,e

1 _ ~ ~ _ - ~
_E [gs Z fauuTadefGZy +e Z fUquAffAuu

feu,d feud,e

+/g% + ¢ Z Foudzrf Zu +V2g <JJWJunWM’V + h.c.)] , (3.7)

f€u,d,e
where 0, = i[y,,7]/2. The dependent coupling are related to the independent ones by

ngwq = qu — de, ngwq = CZWU — CZWd. (38)
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3.4 Single Higgs couplings to gauge bosons

Interactions of the Higgs bosons with the SM gauge boson are described by the following
independent and dependent couplings:

Independent : Cgg> 0Cz, Cyyy Cayy Cazy Camy Cggs Coys Cayy Cazi

Dependent : dCws Cww, Cww, Cwo, Cya. (3.9)

These couplings do not affect the precision W and Z observables at tree-level, therefore
they are only weakly constrained. Typically, the strongest limits on the independent
couplings in Eq. (3.9) come from Higgs studies at the LHC.
The couplings listed in Eq. (3.9) are defined via the Higgs boson couplings to the SM
gauge bosons:
ALPTS = h [20c,myy WIW, +6c.m? 2,2,

b —
Vv v

2 2
Swrw— +~ S wrii- 2 (17— +
+wa?WHVWMV + CU’“’?WMVWHV + cynyg (WN 8,,WW + hC)

2 2 2

9s ~a a € €g g

+CQQZG/MJG;W + C’Y’YZA/WAMV + 0272_69Z;WA;W + sz4_C§Z,uz/Zuu
+CzDQQZu8VZ,W + C’YDgg/ZMaVA[uJ

2 2 2

~ 9 a a . € 1 .~ €g It ~ g 5
+ngZSGP«VG/—’«V + C’Y’VZAHVAHV + CZ’Y2_CQZ/JVA,UJ/ + Czz 403 Z/J,I/Zy,y .
(3.10)

Here X, = 0,X, — 0,X,, and XW = €uwpe0,X,. The dependent couplings can be
expressed by the independent couplings as?

0c, = 0c,+4dm,

Cow = Czzt 233627 + 330«/77
Cow = Cowt 2850, + 85Cyn,s
1
Cwo = W [QQCzD + 9% — ezsﬁcw — (¢~ 9’2)33%7} )
1
o = G [2ee + (0 e — o — (0 - gP)en] . (B

Note that, using equations of motion, we could get rid of certain 2-derivative inter-
actions between the Higgs and gauge bosons: hZ,0,2,,, hZ,0,A,,, and th&,Wi.
These interactions would then be traded for additional contact interactions of the Higgs,
gauge bosons and fermions Eq. (3.17), which would change the relation between the
coefficients of these contact interactions ¢”/ and independent couplings. We find the
current representation more convenient in practice. Namely, in the presence of the box
couplings satisfying the relations in Eq. (3.11), one has ¢/ = d¢"/. Since vertex cor-
rections strongly constrained by precision observables, they can be set to zero in LHC
analyses. If that is done, all the contact interaction terms are consequently also set to
Zero.

2The relation between Cyy, Cww and other parameters can also be viewed as a consequence of the
accidental custodial symmetry at the level of the dimension-6 operators [8].
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3.5 Single Higgs couplings to fermions

The single Higgs couplings to the SM fermions are described by the following set of
independent couplings:

Independent : 6§y, 0yq, 0yYe, SiN G, sin @y, sin @p. (3.12)

where d0y; and sin ¢f are 3 x 3 real matrices. They are defined via the corrections Higgs
boson couplings to the SM fermions:

h _ _

feu,de ij

As in the case of the Higgs boson couplings to gauge boson, these couplings do not affect
the precision W and Z observables at tree-level. Limits on some of the independent
couplings in Eq. (3.12) come from Higgs studies at the LHC.

3.6 Higgs contact interactions with fermions and gauge bosons

At the dimension-6 level there arise contact interactions between the Higgs boson, one
gauge boson, and two fermions, which are not present in the SM. To describe these, we
need the following set of dependent couplings:

Dependent :  dngu, drga, dnae, dhaus dnads dnze, dhzus dnza, dnwgs

dhcu, dncd, dhae, Ahaw, dnad, Anze, Anzu, dnza, dnwy,
Z A VA we . Z Z Zd .Zd Wq Wgq
ci®, cit, iV, et it ety it e, et cp (3.14)

These coupling are 3 x 3 Hermitian matrices, except for cgq who is a general 3 x 3

complex matrix. The couplings in the first two lines are defined by the following dipole-
type contact interactions of the Higgs boson:

= h r a a r
‘C}?d;?f = T 5 [gs Z fU;WT thffG;u/ +e Z fguudhAffAuu

40?2
feu,d fEu,d,e

11/ 91 + g% Z fouwdnzsfZuw + V291 (JawdhwquW;;, + h.c.)

feu,de

h _ N ~ _ . ~
- [Z fouTdnar fG, +e Y foudnarfAu

402
f€u,d fEu,d,e

+1/91 + 9% Z fUWOZhfoZW +v2¢;, <d0u,,czhwquwu_y + h.c.)](3.15)

feu,de

The coefficient above are simply related to the independent couplings describing dipole
interactions in Eq. (3.6): ) )
thf = dvf, thf = dvf. (316)



239

240

241

242

243

244

245

246

247

248

249

250

251

252

The couplings in the last line of Eq. (3.14) are defined via the vertex-like contact inter-
actions between the Higgs, electroweak gauge bosons, and fermions:

_ h _ _ _
/:,hDv}?c = \/ﬁg;W: (UL'YHCE/qVCKMdL + UR’Y#CE/qdR + VL’YHCE/ZQL) + h.c.

h
+ 2;,/924_9/22‘u

Z Frovuel! fr + Z JFR%C?JCRL (3.17)

f=u,d,e,v f=u,d,e
The coefficients of these interactions are simply related to the vertex correction intro-
duced in Eq. (3.3):

A = 5977, NV = 5" (3.18)
3.7 'Triple and quartic gauge couplings

To describe the triple gauge couplings we need the following independent and dependent
couplings:

Independent : AL, 5\2, C3a, C3G;
Dependent : 0912, 0Ky, 0Kz, Ay, Ry, R, 5\7. (3.19)

These couplings are defined via cubic interactions of gauge bosons, in addition to the
SM ones in Eq. (2.6):

L070 = e [0y A W, o+ iy A W |

- igen [8g1s (WAW, = Wi, W) Zy 4 6 Zy WEW, -+ R Z W W |

. € _ N _ . gCy _ < —_ 5

+ Zm%v [AWW;Z/WVpAPM + /\WW;Z/WVpAPH} + Zmlz/v [AZW;;WI/,DZPN + Azw,lj;/Wl/pZPH]
3@ abe va c 63G abe a c

+ 2 g3 feb Gqung/m + 2 g2 feb GWGf,pGW, (3.20)

where the dependent couplings can be expressed by the independent couplings as

59172 — m [077629,2 + 627(92 _ g/2)g/2 _ 022(92 +g/2)g/2 _ CzD(92 +g/2)92}
2 o2 2 2
= 5 (e )
Ry = _ (5776—2 + émM - c) :
2 92 +g/2 g2 _|_g/2
0k, = 0g1, — t30K,, f, = —t3f,
A= A, A = (3.21)

The couplings of electroweak gauge bosons follow the customary parametrization of
Ref. [9]: Other possible cubic gauge interactions do not appear at the dimension-6 level.
Similarly, cubic gauge interactions with only neutral electroweak gauge bosons do not
appear at the dimension-6 level.

10
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Note that dg; ., 0k, and K, are dependent couplings here, unlike in Ref. [1]. Our
motivation is that the Higgs basis should be parametrized such that the connection
with Higgs observables is the simplest. However, for the sake of studying WW and
WZ production a different set of independent couplings would be more convenient. For
example, one could choose the independent couplings as 0gi ., dky, A;, Ky, 5\2, and
consider c,q, ¢,,, and ¢,, as dependent couplings expressed by this set.

At the level of the D = 6 Lagrangian, the corrections to the zero-derivative quartic
gauge couplings in Eq. (2.6) are fixed by d¢; .:

2
Lo~ = 5gw4%(W+W;W;W;—W;W;WjW;)
2

17
+ Sgwergicy WS 2Z,W, Z, - WW, Z,2,)
+ Ogwrzagicose (W ZW, A, + WA W, Z, —2W W, Z,A,), (3.22)

(SgW4 = 203(591’% 5gW2Z2 = 2691,Z7 5gWQZ'y = 691,,2- (323)

On top of that, two-derivative quartic gauge couplings appear with the coefficient related
to A, and cag:

L8 = = (W~ W) (VW W)
— g ni%v Wi (ZuW,, =W, 2,,) Zy+ W, (ZuWW,), =W, 2,,) Z,]
2 n%v (W (AuW,, =W, A,) A+ W, (AW, —WEA,,) A,
—~ egcew);—; (W (AW, =W A) Zy+ W, (AuW, —WEA,,) Z,]

w

Az _ _ _
- egeo s (W (ZuW,, =W Zu) Ay + W (ZuW, = WhZ,,) A

3C3G pabe pedeva b d e
+ 395?]0 [GL GGG + CPodd, (3.24)
where CP odd stands for analogous terms with A\, — A, €3¢ — Csc, and one of the field
strength tensor replaced by the dual one.

3.8 Couplings of two Higgs bosons

To describe double Higgs production process gg — hh at the LHC we need, apart from
the single Higgs couplings introduced in Section 3.6, the following independent and
dependent couplings

Independent : O3,

Dependent : cfg), 6@?, yq(f), yc(f), yf). (3.25)

The independent coupling is defined via the correction to the triple Higgs boson coupling

in Eq. (2.5)
L0 = —A3vh®. (3.26)
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The dependent couplings are defined via double Higgs interaction with fermions and
gluons (which are not present in the SM):

h2 92 _ h2 _
D=6 __ s 2) Ma a ~(2) rya a (2)
Lintf = iy (ng)GMVGHV + cgg)GWGW) ~ 5 E /My my, [fi,R[yf lisfir + h.c.] .

fij
(3.27)
They are related to the independent couplings by
e = Cag &y = g,
[yJ(fQ)]U = 3[(5yf]ij€i¢ij — 5CZ 51’]’7 (328)

Besides the couplings to fermions, other dependent couplings with two Higgs bosons
arise at the dimension-6 level. Specifically, these are the couplings h?VV to the SM
electroweak gauge bosons, and h%f fV contact interactions. As these do not play the
role in the double Higgs production processes currently studied at the LHC, we do not
display them here.

3.9 Four-fermion terms

In order to promote our framework to a complete D = 6 basis it is necessary to include
4-fermion terms. These are not relevant for Higgs searches at the LHC at tree level,
therefore we discuss them in less detail than the interactions listed in the previous
section. The 4-fermion Lagrangian is given by

£4sz6 = Z C4f,i04f,i~ (329)

7

We choose the set of 4-fermion operators Oy, to coincide with those in the Warsaw
basis, see the bottom columns of Table 1. There is only one subtlety that needs to be
taken into account. The basic premise of the Higgs basis is that the tree-level relation
between the SM electroweak parameters and input observables is not affected by new
physics. On the other hand, one of the four-fermion couplings in the Lagrangian,

£4Df:6 D [eueiaor (01,17pl2.1) (bo. 17,01 1) (3.30)

does affect the relation between the parameter v and the muon decay width from which
Gr = 1/v/2v? is determined:

I'(p — evv)

~1+2[6gWe 2[69% €9y — 46m — . 3.31
F(u—>eyy)SM + [ 9L ]11+ [ 9L ]22 m [C££]1221 ( )

Therefore, to keep the muon width unchanged, [cy]12.01 has to be a dependent coupling
related to the independent parameters om and dg as

[cecli22r = 20[gy i1 + 2[0g) “J22 — 46m. (3.32)

Hence, in the Higgs basis the coefficient of one 4-lepton operators defined in the Warsaw
basis is a dependent coupling; coefficients of all the remaining 4-fermion operators are
independent couplings.

12



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

3.10 Summary of the Higgs basis Lagrangian

In summary, the Higgs basis is parametrized by the independent couplings in Eqs. (3.1),
(3.3), (3.6), (3.9), (3.12), (3.19). In total, the Higgs basis, much as any complete basis
at the dimension-6 level, is parametrized by 2499 independent real couplings [10]. One
should not, however, be intimidated by this number. The point is that a much smaller
subset in Eq. (3.9) is adequate for EFT analyses of Higgs data at the leading order in
new physics parameters. For example, to describe single Higgs production and decay
processes in full generality one needs 10 bosonic and 2 x 3 x 3 x 3 = 54 fermionic
couplings. Furthermore, 31 of these couplings are CP-odd, therefore they affect the
Higgs signal strength measurement only at the quadratic level, while flavor off-diagonal
Yukawa couplings only affect exotic Higgs decays. In the limit where fermionic couplings
are flavor blind, 9 parameters are enough to describe leading order EF'T corrections to
the current Higgs signal strength measurements at the LHC.
The full Lagrangian in the Higgs basis is given by

'CHiggs Basis — ‘CSM + Ekmetlc + Evertex + Edlpole + ‘Chvv + ED:ﬁ
+ Ehdjff+£hvff+£v3 +£ +£d2v4+[’ +£hhff+£
+  Lother- (3.33)

Here, Lo contains additional interactions terms: quartic and higher Higgs boson self-
interactions, interactions of 3 Higgs bosons with fermion fields, couplings of a single Higgs
boson to 3 or more gauge bosons, etc. These are not listed in this note because they
are currently relevant neither for electroweak precision tests nor for single and double
Higgs production and decay. If necessity or interest arises, these additional terms can
be easily calculated and added to this note.

We conclude with a number of comments.

e The relations between independent and dependent couplings in Eq. (3.5), Eq. (3.11),
Eq. (3.18), Eq. (3.28) are consequences of the linear realization of electroweak sym-
metry breaking at the level of dimension-6 EFT operators. They are an essential
part of the definition of the Higgs basis. If the independent and dependent cou-
plings were unrelated, then LyigesBasis Would not be a dimension-6 basis but would
belong to a more general class of theories. Such theories are outside of the scope of
this note, however they will be discussed in the framework of the extended kappa
formalism.

e The independent couplings in Eq. (3.3) are probed by precision measurements of Z
and W production and decays at LEP. In particular, assuming vertex corrections
are flavor blind, all the independent couplings in Eq. (3.3) are constrained to be
smaller than O(1073) (for the leptonic vertex corrections and dm = dmy /mwy ),
or O(107%) (for the quark vertex corrections) [2, 4, 11]. Dropping the assumption
of flavor blindness, all the leptonic, bottom and charm quark vertex corrections
are still constrained, in a model-independent way, at the level of O(1072) or better
[12]. These constraints imply these couplings are too small to have any measurable
effects at the LHC, therefore we recommend to impose the electroweak bounds on
such constraints before analyzing LHC data. The 1st generation quark vertex cor-
rections are less constrained in a model-independent way, though one combination
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of them is tightly constrained by measurements of the hadronic Z decays at LEP.
Furthermore, the top quark vertex corrections are poorly constrained (at the O(1)
level) by experiment, especially the right-handed top couplings to Z. If feasible,
the light quark and top couplings should be considered as free parameters in ex-
perimental analyses at the LHC, as this may provide new valuable information to
constrain these couplings.

The Higgs basis is convenient for extracting constraints on dimension-6 operators
from Higgs and electroweak precision data. However, it may not be the opti-
mal basis for some other applications. In particular, computing renormalization
group running of the couplings or matching to concrete BSM model may be more
straightforward in the language of SU(3) x SU(2) x U(1) invariant operators.

Customarily, the SM electroweak parameters are extracted from a(0), myz and G.
One could also use my instead of G, as suggested in Ref. [2]. This formalism
leads to the same relations between the independent and dependent couplings as
written down here, except that ém = 0 by definition, and that ¢}, defined in
Eq. (3.30) becomes an independent couplings. The downside of this formalism is
that the SM predictions for all observables would have to be recalculated, as all
existing high-precision calculations use G as an input.

The number of independent couplings in Eq. (3.9) relevant for Higgs observables
is still large. At the early stages of the LHC run-2 it may be reasonable to em-
ploy simplified analyses with a smaller number of parameters. There are several
motivated assumptions about the underlying UV theory that reduce the number
of parameters:

— Flavor universality, in which case the matrices mdy; and sin ¢; reduce to a
single number for each f = u,d,e.

— Minimal flavor violation, in which case the dominant entries in dyy are [0y,]s3
and [dyq433, while other diagonal entries are suppressed by the respective mass
square ratio.

— CP conservation, in which case all CP-odd couplings vanish: ¢; = 0 = sin ¢y.

— Custodial symmetry, in which case dm = 0.3

We stress that independent couplings should not be arbitrarily set to zero with-
out an underlying symmetry assumption. Furthermore, the relations between the
dependent and independent couplings should be consistently imposed, so as to
preserve the weak SU(2) local symmetry.

The independent couplings are formally of order v*/A% where A is the scale of
new physics. For completeness, it is important to define the range of independent
couplings such that the EFT description is valid. The rule of thumb is that this is

3Custodial symmetry implies several relations between Higgs couplings to gauge bosons: dc,, = éc.,
Cwno = cgczg + sgc,yg, Coww = Czz + 253027 + sgc,y, and Cyuyw = Cup + 255@7 + 5‘567. The last three are
satisfied automatically at the level of dimension-6 Lagrangian, while the first one is true for jm = 0,
see Eq. (3.11).
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374 the case for |¢;| < 1; more sophisticated criteria will be worked out in the future
375 when specific Higgs processes are discussed.

w 4 Map to Warsaw Basis of Dimension-6 Operators

sz We turn to discussing the map between the independent couplings introduced in Sec-
srs tion 3 and coefficients of dimension-6 operators in the electroweak basis before elec-
a9 troweak symmetry breaking. The complete set of dimension-6 operators can be written
;0 in many different equivalent bases which are related by the use of equations of motion
s and integration by parts. Here we work with the so-called Warsaw basis of Ref. [5, 10],
;2 which is distinguished by the simplest tensor structure of the higher-dimensional oper-
s3  ators. The analogous procedure can be applied to other bases.

384 The Lagrangian in the Warsaw basis is given by*

1
Ewarsaw - ESM + ﬁ Z CiOi’ (41)

s where the SM Lagrangian £5M was introduced in Section 2, and the dimension-6 oper-
s ators O; are summarized in Table 1.

387 To map the coefficients of dimension-6 operators into the independent couplings in
s Bq. (3.3) and Eq. (3.9) , we need first to bring Lyarsaw into the same form as Lpiggs Basis
30 in Eq. (3.33). This can be achieved by a series of transformations using equations of
30 motion, integration by parts, and rescaling of the fields and couplings. To begin with,
;1 the operator Oy p leads to a kinetic mixing between the hypercharge and SU(2) gauge
52 bosons, Oyp — —1/Qgg’W3VBm,. To get rid of it, we use the equations of motion:

v+ h)? .
auBuu ,% (ng’ - g/BM) - g/.]}j)
v+ h)? .
oWy, = —g% (9W3 — d'By) — gji — 9" WWy,, (4.2)
w3 where j} =37, Vi fyuf, and j3 = gy, T3 Ppq + 4, T? P (. Using this,
! v+ h)? . .
_CWB%WSVB;W — cwpe’ {% (QWS - ngu)z - QW,?J;/ - Q/B;Jz
2
—Q—ye?’jijWfBW — g BWIWY,
2, 2 2
+ v+h om
= oype’ Fg g i( ) Z —eA gt Vg + 9% 2, ( — cgjﬂ )
+ ic 9y (9 (9Aw — § 2 )W W,
wB (42 + 9/2)3/2 p p )P Py
(g A — 9 Z) W W, — W W], (4.3)

“We use a different notation than the original reference. We also replaced the operator |H' D, H|* by
(H TD,LH -D,H tH)2. For Yukawa-type operators O ¢ we subtracted v? so that these operators do not
contribute to off-diagonal mass terms. This way we avoid tedious rotations of the fermion fields to bring
them back to the mass eigenstate basis. Starting with the Yukawa couplings —Hfj%(Yf’ + c’fHTH/v2)f£

we can bring them to the form in Eq. (2.1) and Table 1 by defining f; r = UL rfL,R, ¢f = U;c}UL,
Yy = UIT%(Y} + ¢}/2)UL, where Uy, g are unitary rotations to the mass eigenstate basis.
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where ji" = jﬁ + j}f is the electromagnetic current. Next, the operators Ogg, Oww,
and Oge change the normalization of the kinetic terms of the gauge bosons. To recover
the canonical normalization we redefine the gauge fields as

CBBg/2 i i CWWQ2 a a CGGQ?
B#_>BH<1+ 1 ),WH—>W‘M<1+T>,G#—>G!L(1+T . (44)

We ignore here the contribution of the operator Ogg to the QCD #-term (we can always
assume it cancels agains the 6-term in the SM Lagrangian, or is dynamically removed
by an axion field). The operator Oy changes the normalization of the Higgs boson
kinetic term, and also induces Higgs boson self-interactions that contain two derivatives.
To recover the canonical normalization and remove the 2-derivative self-interactions we
redefine the Higgs field as

h h?

The relation between the Higgs VEV vy and the mass parameter in the SM Lagrangian
is affected by the Ogy operator:

2
2 _ My i
Vg = A\ <1 + 4)\66H> ) (46)

while the relation between Higgs boson mass and the quartic coupling in the SM La-
grangian is affected by both Ogy and Op:

mi = 2u3 ()\ —2cpg )\ — gCGH) . (4.7)

We have to make sure that the gauge couplings and the Higgs VEV have the same
meaning as in the SM. This is a non-trivial requirement, because dimension-6 operators
affect the observables used to extract these parameters. We have seen that the operator
Ow p shifts the electric charge and the Z boson mass. Similarly, the operator Or shifts
the Z boson mass term. Furthermore, one of the Oy operators leads to the 4-fermion
coupling v~ 2(cge]1201 (V.1 VpVe.1.) (ELY,02) that contributes to the muon decay at the linear
level and thus shifts the Fermi constant. Finally, the leptonic vertex operator Ogy also
shifts the Fermi constant. To undo these effects, we need to ensure that the photon and
the gluon couple to the electromagnetic and strong currents as in Eq. (2.3). Furthermore,
the Z boson mass term in the Lagrangian should be as in Eq. (2.2), and the tree-level
p — ever, decay width should be given by I' = %.
redefinition of the coupling constants and the VEV:

2
9s
gs — Gs <1 - CGG_) )

This is achieved by the following

4

2 2 12 2
g gg g
g — g(l_CWW__CWBTg,Q—i_(CT_(;U)ﬁ)a

4 g 9°—g
) ) g/2 2 12 9/2
g — g <1_CBBZ+CWBW_(CT_6U) W) s
vo — v(l+dv), (4.8)
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where v = ([¢jygl11 + [chel22)/2 — [col1221 /4

One last transformation is needed to match the Higgs basis. At this point, the
coefficients of the contact interactions in Eq. (3.17) differ from the vertex corrections
by flavor universal terms depending only on the electric charge and the isospin of the
fermions. It is possible to get rid of the latter using equations of motion for the gauge
bosons, so as to traded them into zero- and two-derivative Higgs boson interactions with
gauge bosons of the form hV,V, and hV,,0,V,,.

After all these transformations the Lagrangian takes the same form as LyigesBasis-
The dictionary between the coefficients of dimension-6 operators and the independent
and dependent couplings in LiggesBasis goes as follows. The shift of the W boson mass

is given by
1
om = g2 —g? [_QQQIZCWB +g’er — 9/251)} : (4.9)
The shift of W and Z boson couplings to leptons are given by

dgr = e+ F(1/2,0) = f(=1/2,-1),

1 1
Sg7" = 503112 — glmet f(1/2,0),
1 1
Sg7¢ = —50913 — gemet f(=1/2,-1),
1
Sgrc = —5cne + f(0,-1), (4.10)
where
3 9°9"” 3 q?
(1°,Q) = I —QCWBg2 — e + (cr — 6v) (T + ng — g’2>} , (4.11)

and I3 is the 3 x 3 identity matrix. Vertex corrections to W and Z boson couplings to
quarks are given by

ogr " = g+ [(1/2,2/3) = f(=1/2,-1/3),
1

5912/(1 = —§CHud,
Zu 1 / 1
5gL = §CHq_ §CHq+f<1/272/3)7
1 1
Sg7t = —50}1(; — 5l f(=1/2,-1/3),
1
1
Sgat = —5cHa+ f(0,—1/3). (4.12)

The coefficients of vertex-like contact interactions between the Higgs boson, W or Z

a5 boson, and two fermions in Eq. (3.17) are given by

436

VI =6g"7 (4.13)
The shifts of the Higgs couplings to W and Z are given by
4g2g/2 92 3g2 + gl2
(SCw = —CHg — CWBW + 4CTg2 — 9/2 — v 92 — g/2 s
dc, = —cg — 30v. (4.14)
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a7 The two-derivative Higgs couplings to gauge bosons are given by

e

ng = CGG? a9 - CGG7
Cvy = cww +cpp — 4dewp,
S greww + e + 4% 9 cwr
- e
2
C.n = 7 (cp — ov),
 GPeww — ¢%cp —2(9° — ¢%)ews
Coy = 92 +g’2 )
2
Cyo = g2 — g'? ((92 +9%)ewn — 2cr + 26”) )
Cow — CWw,
2

(4.15)

s and the same for the CP-odd couplings C4g, Cyyy Coyy Cazy Cuww, With ¢ — € on the right
s hand side. The Yukawa interactions are given by

URG[Cf]ij

[5yf]ij COS (bf; = \/W — 5ij (CH + (51}) ,
[0yl singl, = _vlmlegli; (4.16)

V meimfj .

a0 The coefficients of Yukawa-type interactions of two Higgs bosons with fermions in Eq. (3.27)
w1 are given by

w2 The anomalous triple gauge couplings of electroweak gauge bosons are given by
2 /2
_l’_
0gr. = gQ — z,g (_gIZCWB +or — 57}) )
Oky = 92CWB7
2 12 2 2
99 g +g
(5:%2 = _ZCWBQQ — 9/2 + g2 — 9,2 (CT — (SU) y
3
Ay = —§Q4C3W,
3
A = —594C3W,
Ry = QQéWBa
/%z - _g,2éWBa
- 3,
Ay = —59 C3ws
- 3 4.
)\z = _ég C3w (418)
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The Higgs cubic interaction is given by
(5)\3 = -\ <3CH + (51)) — CeH - (419)

From these expressions one can derive the relations between dependent and independent
couplings listed in Section 3.

To summarize, in the Warsaw basis the parameters affecting electroweak precision
tests, Higgs production (single or double) and Higgs decay are the following

¢u, ¢r, GG, Cww, CBB, CWB, CGG, Cww, CBB, CWB, C3w, C3w, C6H,
C}m CH¢y CHe, C}{W CHq; CHu, CHd; CHud
Cuy Cd, Ce,
[cee]12;21- (4.20)

The linear transformation between these parameters and the independent couplings in
Eq. (3.3), Eq. (3.9), Eq. (3.19), and Eq. (3.25) is given in Eqs. (4.9)-(4.18). In principle,
one can also perform the LHC analyses in the Warsaw (or any other) basis. One diffi-
culty is that the electroweak precision constraints, which are transparent in the Higgs
basis, constrain rather complicated combinations of the parameters in Eq. (4.20). Alter-
natively, the constraints derived in the Higgs basis can be easily recast into constraints
in the Warsaw basis using the map Eqgs. (4.9)-(4.18), provided that the former are given
with the full correlation matrix.

5 Map to SILH Basis of Dimension-6 Operators

In this section we present the translation between the couplings in the Higgs basis and
Wilson coefficients of dimension-6 operators in the SILH basis [6, 8]. The Lagrangian
is written as

1
ESILH = ,CSM + ﬁ Z SZOZ (51)

Compared to the Warsaw basis defined in Section 4, the SILH basis of dimension-6
operators introduces the following nine new operators:

Ow = %(HTUiﬁMH> D,Wi

v
)
Op = %(H*ﬁ,ﬁ[) 0,B,,,
Opw = ig(D,H'e'D,H) W]

Owp = ig (D,H'D,H) BW?
Oy = ig(DH'o'D,H) W,
O = i (D, H'D,H) E,uln
Oaw = D,Wi,D,W:,

O = auB;w@pBﬂw
Ox; = D,G%,D,GY,. (5.2)
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Consequently, in order to have a non-redundant set of operators, 9 operators present
in the Warsaw basis must be absent in the SILH basis. The absent ones are 4 bosonic
operators Oww, O Ows, Ogpp, 2 vertex operators [Opglir, [Of]11, and 3 four-
fermion operators [Ogli2:01, [Owli1:22, (Ol )33:33- The remaining operators are the same
as in the Warsaw basis, and we use the normalizations in Table 1, which are often
different than in Refs. [6, 8].

One way to derive the translation is to first transform the operators in Eq. (5.2) to
the Warsaw basis using integration by parts, Fierz transformations, and the equations
of motion:

ig’ _ _
8I/B/u/ = 7HTS;H+9/ZYffL7MfL+g/ Z YffRqufR7

f=q,t f=u,d,e
DVW/U/ = EHTU EH—F 5 Z fLU ’yqua
f=q,t
DVGZV = gsq—LTaquQL + s Z q_RTafY,LLQR- (53)
feu,d

5The original references do not discuss the flavor structure explicitly, and the flavor indices of the
absent operators are not specified. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Using these, one can obtain:

1
Owp = Op— ZOWB — Ogs,
1
Onw = Ow — ZOWB — Oww,
1
Oy = —10ws — Opp:
1
Omv = —19%s ~ 9w
1 1
Op = g/2 _ZOT—F 5 Z Yf Z[OHJC]”] ,
f€q,u,dle 7
1 1 ,
f€q.l i
Op = [——OT + Y Yy [Oufdi+ D YpY, Z[Oflfg]ii;jj] :
f€q,u,dl.e 7 fifeequ,dle

1 /

feql 1

1 1
+ D <§[Ozé]z’j;ﬂ = 7 Ouliizis + 5 [qu]” i 4[quhz‘;jj)] :

ij

/ ]' 1 / /
O = g2 { [Oglisisi + 71Oadlisisi = §Oudliiii + 2(Oguliiii + 2[Ogaliiiss
Z‘?j
/ ]' / 1 ! 1 ! ]' /
+ 2[0y4liigi + 5 [Ouu]’L] i T 6[0 Jiigi + 5 [Odd]l] gi E[Odd]ii;jj (5.4)

The operator Oyp = |H|?*|D,H|* appearing above is present neither in the Warsaw nor
in the SILH basis. One can remove it from the Lagrangian by rescaling the Higgs field
and the Yukawa couplings as H — H (1 + €|H|*/v?), y; — y;(1 — €/2). To lowest order
in €, this rescaling generates the following terms in the Lagrangian

AL =e¢ <20HD + 0y =4O + Y Z[yf]ii[of]ii> : (5.5)

feude i

Thus, to get rid of the Ogp operator generated by the transformation from the SILH
to the Warsaw basis we need to choose € = —g*(sy + sgw + saw)/2. Effectively, this
amount to replacing in Eq. (5.4):

1 1
Oup — —§OH + 2X\O¢n — 3 Z Z[yf]ii[of]ii- (5.6)

feu,de i

We are ready to give the translation between the Wilson coefficient in the SILH and
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488
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490

491

492

Warsaw basis:

2
cg = SH_T(3W+SHW+32W)7
12
or = ST_Z(SB+5HB+S2B)7
o = Sem +2X\g° (sw + spw + Saw)
1
cwB = 1 (sap+ Suw)
CBB = SBB — SHB,
cww = —SHW,
. 1, _
Cwp = 1 (Sup + Suw) ,
CBB = SBB — SHB;
Cww = _§HW> (57)
/QY
[CHf]ij = [SHf]l‘j—F g > / (SB+SHB+2823) (5@',
e
[C/Hf]ij = [S/Hf]ij + Z (SW + Sgw + 2821/[/) (Sij, (58)
Sw + SHW —+ Sow
[erlis = [s£)ij — 0159 [yl 5 ; (5.9)
1 12 2
[ceelivii = [See)isii + 1 (9 SoB + 9 SQW) )
1 : )
lealiigg = [seddiayi + 5 (97528 — g%s2w), i<,
[cedlijiii = [Sedlijsji + 9 saw, 1<, (5.10)

where it is implicit that [sgei1 = [y = [See)12:21 = [See)11.20 = 0. For the 4-lepton
operators one should take into account that [Og;iij = [Oulijiji and [Ouljjiii = [Oeeliiiy-
The translation of other 4-fermion Wilson coefficients apart from the one in Eq. (5.10)
can be easily derived from Eq. (5.4), but it will not be needed in the following. For the
Wilson coefficients not listed above the translation is trivial: ¢; = s;.

Given these relations between the Warsaw and SILH basis Wilson coefficients and
using the results of Section 4, we can derive the translation between the Higgs basis
couplings and the SILH basis Wilson coefficients:

929/2 4 2
om = —W <SW—|—SB+52W—|-SQB— FST—F?[SIHZ]QQ) , (5.11)
A 1
f(T%.Q) = 1 [ saw + 950 + 4s1 — 2[sTyla] T°
12
+ W [—(2¢° — g"*)s25 — 9% (sow + sw + sp) + 4s7 — 2[sy 2] Q,

(5.12)

22



493

494

495

496

1 1 A
091" = 58— smet f
1
5 Ze _  _
gL 28 2

(1/2,0),

1 .
e — 5sme+ f(=1/2,-1),

1 R
Sga¢ = —5SHe + f(0,-1),

1 1 A
59511 — ES}{q — §SHq + f(1/2, 2/3),

1 1 ;

St = g o+ S(1/2-1/3)
1 A

Sgat = —5SHu +/(0,2/3),
1 A

6gg/£ = S}M =+ Ji(l/Qv 0) - f<j1/27 _1)7
Sgp * = Sy, + F(1/2,2/3) = f(—1/2,-1/3),

1
5gg/q = T5SHud; (5.13)
V=gV (5.14)
29/ 4 3¢+,
5Cw = —Sg— W Sw + Sp + Sow + Sop — ﬁST + W[SHE]QQ )
3
dc, = —Syg— 5[53%]227
Cgg = SGG,
ny'y = SBB;,
1 2 2 2.2
Cyy — —W [g SHw + 9 °SHB — g SGSBB} )
1
C:o = 2—92 [gQ(sW + SHw + Szw) + 9,2(53 +sSup + SQB) —dsr + 2[8916]22] )
SHB — SHW 2
Coy = T — S¢SBB;
SHW — SHB 1 2 /2 4
Cyo = 5 + PR [g (SW + 821/[/) +g (SB + 523) —dst + 2[3H€]22] )
cwu) - _SHW7
s 1
Cwn = =2+ 2 2 [QQ(SW + sow) + 9% (sp + s28) — dsr + 2[3}16]22} , (5.15)
2 2(¢*—9g?
f vReleyli 3¢ L
[0yylij cos dy; = — 0y |sg + —— (sw + sgw + saw) + = [Shlz|
A /meimfj 4 2
I ii
Byl singl, = — s y)i (5.16)

\ meimfj .
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506

507

508

509

510

511

1
oAz = —A (3SH + 5[8314]22) — S6H, (5.17)

2 /12
g tg
0g1, = —w [(92 - 9/2)5HW + 92(3W + sow) + 9/2(83 + s9p) — 4s7 + 2[8/115]22} )
2
dky = —gz [suw + suB],
1 2 /2 92 + 9/2 2 /2 /
Ok, = 1 (g SHW — g SHB) - W [9 (sw + saw) + g7 (sp + s28) — dsT + Q[SHZ]QQ} ’
3
A = _594331/1/7 Ay = A,
2
dRy = _QZ [Suw + Sus],
g/2
- 3 - -
A\ = —§g4§3w, A= AL (5.18)

A Dictionary

In this section we give a translation between the Higgs basis parameters and other EFT
formalisms used in the literature, keeping all the normalization and conventions as in
the original references. On request, translation to other formalisms may be added in the
future.

A.1 HISZ basis

To describe the di-boson production, Ref. [13] proposes to use the following 5 operators:
Oww = Tr [WMVWVPWPM] )

Ow = D,H'W,D,H,

Oy = D,H'B,D,H,

O = T [WauWo Wy,

Oz = D,H'W,,D,H. (A.1)

This is a subset of operators considered by Hagiwara et al. (HISZ) in Ref. [9]. The
dimension-6 Lagrangian contains

o1 : . S -
£°70 5 = (dww Oww + dwOw + dpOs + dww Oy + dw Oy ) (A.2)

These 5 operators contribute to the TGCs and Higgs couplings, but they do not con-
tribute to oblique or vertex corrections. Thus, they are not strongly constrained by
electroweak precision tests, and therefore represent a perfectly fine parameterization of
EFT new physics in di-boson production.
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512 One should remember that the covariant derivatives in Refs. [9, 13] are defined with
si3 the opposite sign than here. This amounts to rescaling the gauge fields as W, — —W,
su B, — —B, in the translation. Then the electroweak field strength tensors defined in
sis Ref. [13] are related to the ones used here by

By — —%g’BW, W — ——gJ’WZ (A.3)
st6 ' 1his allows us to relate
1 A 1
Oww = —=0Osw, Ow =—=Opgw, Op=—=0Opyp,
4 2 2
A 1 A 1
ww = —3%w Ow=—50mw (A4)

siz where O; on the right-hand side are operators in the SILH basis in the normalization of
sis Section 5. Thus, the map between the HISZ and SILH coefficients is the following:

1 v? 1 v? 1 v?

Saw = 4A2 —dww, sgw = 2A2 —dw, Sup= 3z —ds,
- 1 v? . 1% -
Ssw = 4A2 dww, SHW — _§PdW (A5)

s The anomalous TGCs and the HISZ basis Wilson coefficients are related by:

2 2,2
g tg v
0g1. = 3 Pdw
02
g° ~ g°v*
Oy = m—(dW*dB)’ OFy = gpdw
3 ~ 3g v

s20 Inverting these formulas, the relation between the Wilson coefficients in the HISZ basis
s and the Higgs basis parameters reads

8A2

d — /\27

ww 3gtv?

4A? 2 2 2 2 2,2 2
dw = —W [g Coo T G "Caz — Sp€ Cyy — sp(9” — g )CZV] )
4A2 2 2 2 2 2/ 2 /2

Ay = (o gy [9en + s = cheer, — (g = 9)ew],

- 8A?
d — Z9

ww 3941}2

. 8A? __

e (A7)
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H*D? and HS f?H3 V3D3

[V

On | [0,(HIH)]® O, | —(H'H—%)eH¢ Oz | gifoteGe,Gb Ge,
Or (mﬁuﬂ)2 O, | —(H'H-%)aflq O | ¢8f™G2,Gh G5,
Oen | (HTH)? Oq | —(H'H — 2)dH'q Osw | gPe* Wi, Wi, Wk,
Ogﬁ/ g3eijkW;VngW§u
V2H? f?H?D f2VHD
Oce | SHIHGY,GY  Op | ilyHIDH Oaw | gloea' HWI,
Oge | SHUHG, GO, Lo | iloi tH o' Dy H  Op | g'loueH B,y
Oww | CHHW.W, Oy, | ieyeH D H Ouc | 9540 TouH G4,
O | SHIHWI, Wi, Ou, | iqruqH' D H Ouw | 90uc’ HWY,
Ogg %HTH BB O’Hq icjai*quHTo*iF;H OuB g’(jow,uﬁ B
O | CHHBWB, — Opu | iyl D H Ouc | 95G0, TdH G2,
Ows | g H'o'HW} B, Oy idy,dH TE;H Oaw | 9Goudo'HW),
Owg | 9¢HIG'HW!, B,y Opya | iun,dHTD,H Oap | 9'GouwdH By,
(LL)(LL) and (LR)(LR) (RR)(RR) (LL)(RR)
Ou () (Eyl) Oce (evue)(@vue) Ote () (Evue)
Oqq (7719 (@V9) Oun | (Wryu)(@y,uw) Ow | (Lyul)(aryuu)
Ohy | (@vo'a)(@ruo'q) Odad | (dvud)(dy,d) Ow | (Pyuf)(dyd)
Orq (£3:0) (G7u9) Ocu | (Byue)(@vuu) Oge | (qVu9)(ee)
Ol | (0vuo'0)(Gvuotq) Ocd | (evue)(dvud) Ogu | (@7u9)(@yu)
Oquqd (@ u)ejr(q"d) Oua | (@yuu)(dyud) O | (@ Tq)(wry, Tu)
Otuga | (@ T u)en(d°Td) Oly | (@y,Tu)(dvy,T"d) Oqd | (qvuq)(dvyd)
Otequ (Fe)eji(du) Oua | (@vuTq)( 1, T°d)
Ofequ | Wouwe)ejn(@ o u)
Otedq (Fe)(dg’)

Table 1: A complete, non-redundant set of baryon-and-lepton-number-conserving
dimension-6 operators built from SM fields [5]. In this table, e, u,d are always right-
handed fermions, while ¢ and ¢ are left-handed. A flavor index is implicit for each fermion
field. For complex operators the complex conjugate operator is implicit. Including the
flavor structure and complex conjugates, this table contains 2499 distinct operators [10].
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