
DRAFT
Draft version 1.1

ATLAS NOTE
ATLAS-SOFT-COM-2014-048

2014-03-13

ATLAS Future Framework Requirements Group Report1

John Baines, Tomasz Bold, Paolo Calafiura, Sami Kama, Charles Leggett, David Malon,2

Graeme A Stewart, Benjamin M Wynne3

Abstract4

The Future Frameworks Requirements Group was constituted in Summer 2013 to con-5

sider and summarise the framework requirements from trigger and o✏ine for configuring,6

scheduling and monitoring the data processing software needed by the ATLAS experiment.7

The principal motivation for such a re-examination arises from the current and anticipated8

evolution of CPUs, where multiple cores, hyper-threading and wide vector registers require9

a shift to a concurrent programming model. Such a model requires extensive changes in10

the current Gaudi/Athena frameworks and o↵ers the opportunity to consider how HLT and11

o✏ine processing can be better accommodated within the ATLAS framework.12

This note contains the report of the Future Frameworks Requirements Group.13

c� Copyright 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

DRAFT

Contents14

1 Introduction 215

1.1 Methodology and Source Material 316

1.2 Concurrency and Hardware Evolution 317

2 Current Framework 518

2.1 O✏ine Processing 519

2.1.1 The Gaudi Architecture 520

2.1.2 Component Model 521

2.1.3 State Machine 622

2.1.4 Main Components 623

2.1.5 Job Configuration 824

2.1.6 Data Access 825

2.1.7 Data Model Foundation Classes 926

2.1.8 Scheduling 1027

2.2 High Level Trigger Processing 1128

2.2.1 Key concepts in HLT events processing 1129

2.2.2 Trigger Configuration 1230

2.2.3 HLT Steering 1331

2.2.4 HLT Algorithms 1332

2.2.5 Trigger Navigation 1433

2.2.6 Optimization of Event Processing 1434

2.2.7 Integration with Monte Carlo production 1535

2.2.8 Additional Trigger requirements 1536

3 Requirements for Event Processing 1637

3.1 Required Framework Elements 1638

3.1.1 Whiteboard 1639

3.1.2 Scheduler 1940

3.1.3 Algorithms 2041

3.1.4 Sequences 2142

3.1.5 Tools 2143

3.1.6 Services 2244

3.1.7 Auditors 2245

3.1.8 Converters 2246

3.1.9 Schedulable Incidents 2347

3.2 Overall Framework Features 2348

3.3 Framework Rationalisation 2349

3.4 Additional Details 2350

3.4.1 Input/Output Layer 2351

3.4.2 Time Varying Data 2452

3.4.3 Accelerator Devices 2553

3.4.4 Configuration 2654

3.5 EventService 2755

3.6 Code Evolution 2756

1

DRAFT

DRAFT

4 Timescales 2857

5 Conclusions 2958

5.1 Recommendations 2959

5.2 Observations 2960

1 Introduction61

The ATLAS Future Framework Requirements Group was constituted in Summer 2013 and was man-62

dated to:63

1. Summarise the requirements from both HLT and reconstruction for configuring, scheduling and64

monitoring algorithms, and other related functionality that is felt to be relevant. These may be65

documented in old material that need checking for current relevance and completeness, or they66

may need to be reverse engineered using the skill and experience of the group.67

2. Consider how these might be accommodated in a common framework that supports concurrency68

and helps to achieve high throughput on many-core computers, such as the GaudiHive prototype69

[1][2].70

3. In particular, consider how to minimise the need for extensions or layers to the framework spe-71

cific to one or other use cases, with the aim of making it straightforward to write algorithms to72

work well in both use cases.73

4. Converge on the union of the HLT and reconstruction requirements for a future framework, and74

an analysis of the technical feasibility of satisfying them with a single common framework.75

5. The study group is encouraged to think beyond current implementations, recognising that some76

decisions made a long time ago and in the context of the Gaudi framework may not be applicable77

in the future.78

6. The study group is encouraged to consult experts in the trigger and o✏ine software communities.79

7. The study group should take about 2-3 months and provide reports related to interim milestones.80

(a) 1st month: initial view of requirements and other progress81

(b) 2nd month: iteration on requirements, report of early stages of analysis and implications on82

new framework and other progress83

8. Final deliverable: report containing requirements, analysis and any recommendations for the84

design of the future framework.85

In practice the group only properly started its work in March 2014 and quickly concluded that the86

original timscale was overly optimistic to produce a report that adequately covered all areas. How-87

ever, by reporting in 2014 we allow adequate time for the collaboration to consider the next steps in88

framework design and implementation.89

May 12, 2015 – 15:40 2

DRAFT

1.1 Methodology and Source Material DRAFT

1.1 Methodology and Source Material90

The group’s methodology was to first have some general meetings to discuss scope and identify di↵er-91

ent topics that needed to be examined in detail. Then, in follow up meetings, the group either discussed92

particular topics utilising internal expertise or invited an external expert to introduce a topic. Follow up93

discussions by email were frequently held.94

The group’s twiki page holds a record of meetings:95

http://cern.ch/go/7Cxj96

The group’s mailing list, atlas-sw-ffreq@cern.ch, was archived.97

1.2 Concurrency and Hardware Evolution98

As already noted, the major driver towards a new framework implementation is the advent of multi-99

core CPUs, where throughput can only be increased by parallel execution. Here we briefly review the100

drivers for this trend and the factors that constrain the throughput achievable in high energy physics101

computing applications.102

The computing power of a CPU is proportional to its clock frequency and the number of compo-103

nents (transistors) it contains. More transistors allow more complex operations to be performed in a104

single clock cycle and higher clock frequency allows more operations to be performed in a given time.105

Historically, clock frequency and the number of transistors in CPUs increased roughly proportionally.106

Overall power consumption rose, but this was partially mitigated by the shrinking size of transistors107

on the die and the lowering of CPU voltages. In this era the throughput of HEP code rose naturally,108

benefitting from this steady increase in computing power.109

However, around 2005, these increases in power consumption (with the associated costs of opera-110

tions and cooling) could not be sustained. Clock frequencies started to plateau while transistor counts111

kept increasing as per Moore’s law (Figure 1). These new transistors were used for adding new instruc-112

tions, wide vector registers and multiple CPU cores into the same package (which provided hardware113

multi-threading, Figure 2). This approach continues to increase the theoretical computational capacity114

of a CPU, but exploiting this increase requires a parallel processing approach.115

Concurrent execution — parallel processing — can take many di↵erent forms, but breaks down116

roughly along these lines:117

• When a large input dataset can be divided into independent sections, it can be analysed in parallel118

by separate copies of a program. These processes can run in di↵erent cores of a CPU, but they can119

equally well be run on entirely separate computers. Thus, multi-process computation predates120

multi-core CPUs, and has been used in HEP for years.121

• Multi-core CPUs allow a single program to perform multiple independent tasks at once, in sep-122

arate ‘threads’. This is conceptually similar to multi-process computation, but allows sharing of123

common resources, particularly memory, between the threads. Threads may be used to perform124

completely di↵erent operations, or to perform similar operations on di↵erent inputs.125

• Single Instruction Multiple Data (SIMD) processing allows a specific operation to be performed126

on several inputs at once. A program must specifically structure the data it handles in order127

to exploit this feature successfully. Vector registers are loaded with 2, 4, 8 or 16 simultaneous128

inputs, and an operation is performed on the whole register.129

May 12, 2015 – 15:40 3

http://cern.ch/go/7Cxj

DRAFT

1.2 Concurrency and Hardware Evolution DRAFT

1980 1990 2000 2010

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Processor scaling trends

Year

Re
la

tiv
e

sc
al

in
g

●

●
●

●●

●

●● ●● ● ●●
●●

●●
● ●

●

●
●

●
●

●
●

●
●●

●
●●

●●●●●●●● ●●●●
●

●●●
●●●
●●
●●●●●●●●●●●● ●●●● ●●●

●
●

●●●●●●● ●
●●● ●

●

●●●●●●●●●● ●
●

●●●●●●
●●● ●

●●●●
●● ●●

●

●

●

● ●

●

●

●●
●
●●●●●●●
●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●

●
●

●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●
● ●●●●

●●●●●●
●●●●

●●
●●●

●

●

●●
●
●●

●●

●
●●

●●●

●

●
●● ●●●●●●

●●●●●
●

●●●●
●●●●●●

●●● ●
●●● ●●●●●●●●●

●●●●●

●

●

●●●

●

●●●

●●●●●●●●

●●
●●
●●●●●●

●●

●

●

●
●

●

●

●●●●●
●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●

●●●●●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●
●●

● ● ●
●
●

●

●●●

●

●
●●●●

●●
●●●●●
●●●●
●●●●●●●●●●●●●●● ●

●●●●●
●●●●●●

●
●●
●●●●●●●●●● ●●●●

●●

●
●●●

●●
●
●
●●●● ●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●● ●●● ●●●
●●●●● ●●

●● ●●●●●●●
●●●

●● ●●●●●
●●

●●●●●●●

●
●●
●●●● ●● ●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●

●
●

●
●
●●●

●●●
●● ●

●

●●●● ● ●● ●

●●●●

●
●●

●●●●●●●

●●●●●● ●
●●●

●
●●●

●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●

●

● ●●●●●●●●

●

●●●
●

●●●
●

●●●●
●●●●●●●●●●●

●●●●●●

●●●●●●●●●● ●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●●●●●

●●●●●●●●●● ●●

●
●●●●●●●●●●●●
●●●
●●●

●
●●
●●
●●

●●●●●●
● ●●●
● ●●●

●●●
●●●

●●●●●●●●

●
●●
● ●

●
●
●

●●
●●
●●●●●●●● ●● ●

●●●●●●
●●●●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●
● ●●● ●●●

●●
●

●●
●●
●●

●●●●●●●●●●●●●
●●●●●●●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●
●
●●●●●●

●●

●●●●●●
●

●
●●
●●●●●●●●●●
●

●●

● ●

●

●

●

●

●

●

●●●
●●

●

●

●●
●●

●●

●
●
●●●●
●●

●●●●
●

●●●
●●●●
●●
●
●●

●●
●●●●●●●●●
●●●●●●●●

● ●

●

●

●
●

●● ●

●●
●● ●

●●

●●
●●

● ●

●

●

●
●
●●
●
●●●
●●

●●●●
●●

●●●●●●●●●●●●
●●●●

●●●
●●●●●●● ●●

●●●●●●●●●● ●
●●●●●●●● ●

●●●●
●

●●

●●
●
●
●●●●●●●

●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

● ●●
●●●●●●
●●●●

●
●●●●●●●●●●●●
●●●●
●●●●●●●●
●
● ●●●●

●●●●●●

●●●● ●●
●●●

●

●●
●●
●●

●●

●●

●
●●

●
●
●

●●●●●
●
●●●●●
●●●●●

●●●●●●

●●●
●●● ●●●●●●

●●●

●●●●●

●

●●●

●

●●●

●●●●●●●●

●●●
●●
●●●●

●●●●●
●●●
●

●●

●●●●●●●●●●●●●●●●

●
●
●●●●
●●●●●
●●●●●●●
●●

●●
●
●
●
●
●

●

●

●●

●●●●

●
●●●●●●●●●
●●●
●●●●●●●●●●●● ●●

●●●● ●●●●● ●●
●●
●
●●●●●●●
● ●

●
●●

●

●●●
●●●●●●

●●●●
●●

●●●●●
●

●●●●●●●●●●●●●●●●●● ●●● ●●●
●●
●●● ●● ●

●
●●●

●●
●●
●●
●

●●
●●
●●● ●●
●●●●●
●●

●●
●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●
●●●

●●

●

●●●●
●●

●●●
●

●
●●●
●●●

●●●●
●●

●
●●

●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●

●●
●
●●
●●
●

●●
●●●●●
●

●●●●
●

●
●●●●●●●●

●
●●

●
●●● ●●●●●●●●●●●●
●●●●

●●●●●●●●●● ●●●●●●●

●●●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●
●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●

●●●
●●●●●
●
●
●
●
●●●

●●
●●
●●●●●
● ●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●● ●●●
●
●●●
●
●●

●

●●
●●
●●●●●●●●

●
●

●●●●●●●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●
●●●
●●
●
●●●
●
●
●
●
● ●●● ●●●●

●
●
●
●●
●●●
●●
●●●
●
●●●●●●●●●
●
●●●
●
●
●
●●●●
●
●
●●●●●●
●
●
●●
●●●
●●●●●●●
●●●●
●
●●
●
●●●
●●●●
●
●●●●●●●●●
●
●●●
●●●●

●●●
●

●● ●
●

●●
●●●●
●●●●●●●
●●●
●
●●
●

●●

●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●

●
●

●●●
●
●●

●

●●●
●●
●

●●●●
●
●

●●
●●●●●●
●

●
●

●
●●●●●●

●

●●
●

●●●
●● ●

●

●●
●●

●

●●●●
●●

●●
●●

●●●
●●●●
●●
●
●●

●●
●●●●●●●●●
●●●●●●●●

●

●● ●

●● ●● ● ●●

●●

● ●

●

●

● ●●●
●
●●●
●●

●●●●

●●

●●●●●●●●●●●●
●●●●

●●● ●●●●●●● ●●

●●●●●●●●●● ●

●●●●●
●

●
● ●●●

●●

●

●●

●●
●
●
●●●●●●●

●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●
●●●●

●
●●●●●●●●●●●●
●●●●
●

●●●●
●●●●●●
●

●●
●●●

●

●●

●●

●
●●●●●

●●● ●●●●●●
●●●

●●●●●

●●●

●●●●●●●● ●●●
●●
●●●●

●●●●●
●●●
●

●●

●●●●●●●●●●●●●●●●
●

●

●●

●●●●

●
●●●●●●●●●
●●●
●●●●●●●●●●●● ●●

●●●● ●●●●● ●●
●●
●
●●●●●●●
● ●

●
●●

●

●●●
●●●●●●

●●●●
●●

●●●●●
●

●●●●●●●●●●●●●●●●●●

●●● ●●●

●●
●●●

●● ●
●
●●●

●●
●●
●●
●

●●
●●
●●●

●●

●●●●●
●●

●●
●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●

●

●

●●●

●●●
●●

●

●●●●
●●

●●●
●

●
●●●
●●●

●●●●
●●

●
●●

●●● ●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●● ●●

●
●●
●●
●
●●
●●●●●
●

●●●●
●

●
●●●●●●●●●

●● ●
●●● ●●●●●●●●●●●●
●●●●

●●●●●●●●●● ●●●●●●●

●●●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●
●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●●●
●●●

●●●
●
●
●
●●●

●●
●●
●●●●●
● ●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●

●●●
●
●●●
●
●●

●
●●
●●
●●●●●●●●

●
●

●●●●●●●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●
●●●
●●
●
●●●
●
●
●
●
● ●●● ●●●●

●
●
●
●●
●●●
●●
●●●
●
●●●●●●●●●
●
●●●
●
●
●
●●●●
●
●
●●●●●●
●
●
●●
●●●
●●●●●●●
●●●●
●
●●
●
●●●
●●●●
●
●●●●●●●●●
●
●●●
●●●●

●●● ●

●● ●

●

●●●
●
●●

●

●●●
●●
●

●●●●
●
● ●

●●

●●

●

●

●

●

Transistors
Clock
Power
Performance
Performance/W

Moore's Law

Clock speed

Figure 1: Historical CPU performance scaling [3]

Figure 2: CPU hardware cores evolution [3]

• Co-processor cards tend to have very many processing cores, each individually unimpressive,130

but collectively powerful. These were originally designed to perform calculations on very large131

matrices (in computer graphics rendering), where usually each row, or even cell, in the input132

matrix can be treated independently. They are now used more generally for problems where the133

number of independent operations to perform is much larger than the number of available CPU134

cores.135

The increase in parallel processing capacity has not been matched by proportional improvements136

in other system resources, such as RAM size or memory bandwidth. Over time, the power cost of137

memory and memory access has actually surpassed the power consumption of the CPU itself. Thus138

requiring large amounts of memory in low power, multi-core or many-core machine (to maintain a139

May 12, 2015 – 15:40 4

DRAFT

DRAFT

ratio of RAM per core of 2-4GB1) is simply not cost or power e↵ective. Consequently, the naive140

multi-processing model used in the past is becoming less feasible. This motivates a shift towards141

multi-threaded programming, where threads within a program can share memory, and towards more142

optimal memory layouts, where the bandwidth gap between RAM and CPU is mitigated by e↵ective143

use of memory caches.144

As it has become increasingly hard to engineer a single, practical die that provides excellent per-145

formance in all areas of computational space, computing architectures are also now becoming more146

diverse. x86_64, ARM64 and PowerPC are all present as general purpose CPUs and, while not directly147

connected with the framework, utilising diverse architectures is an important part of ATLAS’s ability148

to exploit resources in the future, so this motivates ensuring that the framework (and more generally149

the software stack) does not impede our use of these resources.150

These general platforms are increasingly backed up by specialist co-processors that themselves151

come in diverse forms: Xeon Phi, Nvidia GPGPUs, AMD GPUs and even FPGAs supporting OpenCL.152

These devices generally have wide, maskable, vector registers, a very large core count and total com-153

pute powers as high as multi-TFLOPs. Device memory per core is highly variable (100kB to a few154

GBs) and is often core local with very high performance. They can also be connected to the server with155

many di↵erent technologies. So, while it is not at all obvious that there will ever be a single, general,156

solution to utilise such devices, an updated ATLAS framework should certainly not hamper access to157

them and must consider their use in any future computing strategy.158

Considering all the above, a new framework should help facilitate the shift from multi-process to159

multi-threaded processing for ATLAS, and, at the same time, should provide access to co-processor160

cards. Use of SIMD processing is somewhat outside the scope of the framework, however, considera-161

tion should be made for promoting the use of data structures that can easily be loaded into SIMD vector162

registers as the utilisation of optimised memory layouts is critical to the e�cient use of modern CPUs163

and co-processors.164

2 Current Framework165

2.1 O✏ine Processing166

2.1.1 The Gaudi Architecture167

Athena is the ATLAS framework that implements and extends the Gaudi component architecture [4][5].168

It is designed for ease of use by physicists, hiding implementation details behind abstract interfaces,169

yet flexible enough to allow the replacement of back end components, with minimal user impact, as170

new technologies emerge. It maintains a clear separation between data and algorithms, using object171

oriented design philosophies, and also enforces separation of transient and persistent data. Gaudi is172

implemented as a state machine, which is user extensible.173

2.1.2 Component Model174

The main components of the Gaudi framework are Algorithms, Services, AlgTools and Converters.175

These components are accessed via abstract interfaces, to hide implementation details and allow trans-176

parent evolution. A plugin mechanism handles the loading of the various components and libraries,177

and a set of managers controls the creation, scheduling, and deletion of these components.178

1Here we also note in passing that the challenges of pileup in Run 3 and at HL-LHC only increase pressure on memory.

May 12, 2015 – 15:40 5

DRAFT

2.1 O✏ine Processing DRAFT

 Persistent
Storage

User
Configuration

Files

Algorithms
AlgorithmsAlgorithm

Configuration
Manager

initialize()

execute()

finalize()

Transient
Data Store

External
Libraries

Data
ConvertersDataObjects

DataObjects

Use

Use

Configure

ServicesServicesServices

User
Configuration

Files

User
Configuration

Files

A
p

p
li
c

a
ti

o
n

M
a

n
a
g

e
r

(s
ta

te
 m

a
c
h
in

e
)

c
o
n
fi
g
u
re

 |
 i
n
it
ia

liz
e
 |
 e

x
e
c
u
te

 (
n
)

|
fi
n
a
liz

e

Python
interface
interactive /

scriptable

DataObjects

Figure 3: Gaudi Component Model

2.1.3 State Machine179

During the course of a job, the framework takes its components through a series of states, as shown in180

Figure 4, which are Offline, Configured, Initialized, and Running, via a sequence of tran-181

sitions. Components implement these transitions via specific methods, such as their constructor,182

initialize(), start(), execute(), stop(), and finalize(), which are called by the framework183

at the appropriate time. While the list of states is not extensible without modification of the framework,184

a similar e↵ect can be achieved via the use of incidents, which are fired by the EventLoopManager at185

well defined times, such as BeginEvent and EndEvent. Not all states need be implemented by any186

component, in fact some components are forbidden to implement certain states, such as the execute()187

method for services.188

2.1.4 Main Components189

Data objects are the building blocks of the event. They can be event related items, such as tracks or hits;190

or specific to the detector, such as geometry objects. The type of object will determine its lifespan —191

event related data is cleared at the end of every event, whereas detector objects are much more static,192

and only change when conditions require. These objects also live in separate Data Stores to ease access193

and maintenance.194

Algorithms are user-written elements that responsible for manipulating data objects, or converting195

one type of data object into another. They are executed once per event, and implement a number of196

May 12, 2015 – 15:40 6

DRAFT

2.1 O✏ine Processing DRAFT

Offline

Configured

Initialized

Running

terminate

finalize

stop

configure

initialize

start

execute

Figure 4: Gaudi State Machine

states.197

Services are components that are setup and initialized once at the beginning of the job (or sometimes198

created on demand), and can be used by many other components. There is usually only a single instance199

of any one service instantiated at any time, and, once initialized, services have no state. Services can be200

retrived by clients using service handles after initialisation. Accessing services is via abstract interfaces.201

A single concrete service can implement multiple abstract interfaces.202

Tools are lightweight objects whose purpose is to help other components perform their work. They203

can either be public, and shared between clients, or private, where each client recieves a new instance204

of the tool. Similar to services, tools are intended to be stateless after initialization and are usually205

accessed via abstract interfaces. Clients retrieve tools using tool handles (internally, the tool handle206

accesses the tool service, ToolSvc). In current ATLAS use we note that stateful tools are often used to207

communicate data between di↵erent framework components.208

ATLAS has implemented various useful extensions to the Gaudi core algorithm, tool and service209

classes (AthAlgorithm, AthAlgTool, AthService, respectively). These extensions handle many210

bolierplate operations, such as access to event and detector stores as well as the message logger.211

Converters are in charge of converting specific event or detector data into other representations, such212

as from persistent to transient, when reading data from o✏ine storage, or the reverse when writing it213

out. Converters are specific to the data type that they are in charge of converting. They are automatically214

triggered by the framework when a new representation is requested.215

Managers are specialized components that serve to orchestrate certain elements. The application216

manager directs the operation of the job, loading the configuration, initializing the system, and deciding217

which algorithms to create, and when to call them. The service manager is in charge of creating and218

providing access to all services. The algorithm manager has a similar functionality for the algorithms.219

While there is no o�cial tool manager, the ToolSvc, which for historical reasons is in fact a service,220

behaves in much the same fashion.221

Auditors provide a mechanism to monitor the entry and exit points of certain methods, such as222

initialize, start, execute and finalize. While a number of these entry points are pre-defined223

May 12, 2015 – 15:40 7

DRAFT

2.1 O✏ine Processing DRAFT

in the StandardEventType structure, custom event types can also be defined by the user. Before and224

after each of these methods is invoked by the framework, the AuditorSvc is passed a pointer to the225

component to be called, and the method. Individual auditors, which can perform disparate tasks such226

as measuring CPU time, monitoring memory consumption, or just printing the name of the component227

that is about to be executed, are then invoked, once again taking the pointer to the component and the228

method as parameters. The list of auditors to be executed is configurable at run time, and individual229

components can enable or disable their execution for specific methods.230

2.1.5 Job Configuration231

One of the key requirements for ATLAS software is the ability to assemble and configure an application232

without having to recompile any code. This is accomplished by setting run-time properties of Gaudi233

components, and their managers, via the IProperty interface. Properties are read in and set during234

the configuration stage of a Gaudi application. Initially properties were read parsing a set of ASCII job235

options files with an ad-hoc syntax. ATLAS Trigger replaced job options files with a set of database236

tables.237

The configuration of ATLAS o✏ine applications proved to be too complex to be captured by a set238

of property declarations. For example, the best default values for a component may depend on the type239

of job, detector geometry, or even input data. Also properties of di↵erent components may need to be240

kept in sync, for example by selecting a set of cuts to be shared across multiple tools.241

The approach chosen by ATLAS o✏ine was to replace the original ASCII job option files with a242

python job configuration layer based on auto-generated Configurable objects, that capture the default243

values, allowed range, and documentation of all IProperty components, and on JobProperties244

objects, that can be used to configure multiple components at the same time. Tool and service handles245

are also properties.246

Python job configuration significantly improves Athena usability by detecting many configuration247

problems during the first seconds of an Athena job, rather than after several minutes when a misconfig-248

ured component is first used, and by greatly limiting the amount of cut-and-paste configuration which249

was needed with ASCII job options.250

Unfortunately, using a powerful programming language like python for job configuration is not251

without its problems, particularly when the configuration of a job grows organically to tens of thou-252

sands of lines of python code. The lack of a real job configuration framework, and of adequate audit-253

ing/debugging tools, has made the configuration of reconstruction jobs in particular a dark art under-254

stood only by a handful of experts.255

2.1.6 Data Access256

One of the main design principles of Gaudi/Athena is the separation of data and algorithmic objects.257

The former are simple, stable, physics data objects like cells, tracks, or electrons. The latter are compo-258

nents like algorithm and algtools whose job is to simulate, reconstruct, or analyze data objects, hence259

being both producers and consumers of data objects.260

An algorithm or an algtool interacts with data objects through an API called StoreGate[6], which261

can be seen as an in memory database of data objects keyed by type and name. Besides providing an262

API, storegate manages the lifecycle of data objects, from disk to memory and from memory to disk,263

relying on Gaudi persistence mechanism to manage the transient/persistent conversion of objects in a264

technology independent way. Storegate is composed of265

1. StoreGateSvc, a Gaudi service which provides the associative array functionality.266

May 12, 2015 – 15:40 8

DRAFT

2.1 O✏ine Processing DRAFT

2. DataLink and ElementLink, two handle template classes which are persitifiable references to267

data objects and their elements.268

3. ProxyProviderSvc another service which supervises the just-in-time T/P conversion of data269

objects.270

4. ClassIDSvc a registry of unique numerical identifiers for data object types.271

5. AthenaOutputStreamer an algorithm and an array of algtools which steers the writing of data272

objects out to disk at the end of each event.273

Some data objects are based on conditions data that are stored in the detector store. These objects274

have a certain interval of validity (IOV), that is identified by the meta-data asociated with the conditions275

data. Often there is not a one-to-one correspondence between the conditions data and the value of the276

data object, but rather certain calculations must be performed to fill the data object. The IOVSvc is used277

to manage this process in a manner that is transparent to the user. During initialization, data objects278

are registered against the conditions data they depend on, as are callback functions that are used to279

recalculate more complex data objects. Complex relationships between the objects, functions and the280

conditions data they depend upon can be built, and stored by the IOVSvc as a directed acyclic graph. At281

event boundaries, (or in some instances only at run boundaries, or even job boundaries - the checking282

interval is set at run time via a jobOption), the IOVSvc determines the validity of all conditions objects283

that it manages, and resets any associated data objects that have gone out of scope. It will also trigger284

the execution of the registered callback functions when the conditions data changes. The next time a285

user accesses one of these data objects, it will either have already been updated by a callback function,286

or be automatically reloaded.287

2.1.7 Data Model Foundation Classes288

Polymorphic Containers ATLAS reconstruction relies heavily on the usage of polymorphic con-289

tainers. Polymorphic containers allow algorithms to iterate on objects of disparate types (such as290

CaloCell, TrackParticle, or Electron) using a common interface (INavigableFourMomentum).291

ATLAS introduced the DataVector template, a memory-managing polymorphic container, that292

also supports the creation of user-defined views of its elements, as well as container-level “inheri-293

tance”, that allows the retrieval of, for example, a DataVector<LArCell> from StoreGateSvc as a294

DataVector<I4Momentum>.295

Support for Complex Data Models ATLAS has the capacity to employ transient data models of296

considerable complexity, models that reflect the formidable expressive power of C++. Supporting297

classes provide machinery and templates for streaming the states of such transient objects into state298

representations more directly amenable to persistence (and more directly suitable for object state trans-299

mission across networks or among processes). Additional infrastructure classes integrated with the300

framework’s conversion services handle object persistification and associated concerns. Importantly,301

this infrastructure also provides a natural locus for support of (arguably inevitable) schema evolution302

in both transient and persistent data models.303

Data model infrastructure and supporting classes provide a means to create externalizable refer-304

ences to specific events and to use them as input to processing, identification of a primary event "entry305

point," a locus for recording the constituent content objects associated with a given event along with a306

means to navigate to that content, and a record of the provenance of a given event (e.g., the ESD or the307

May 12, 2015 – 15:40 9

DRAFT

2.1 O✏ine Processing DRAFT

raw event from which the analysis content of an event was derived), and the means to navigate thereto.308

The ATLAS DataHeader and its supporting classes, and persistent object reference technology adapted309

from the LCG POOL project, provide this and related functionality.310

The ATLAS data model provides a standardized means of event identification and event type dis-311

crimination, implemented via an EventInfo class that also hosts the principal, generally immutable312

quantities by which both simulated and real events may be e�ciently selected or filtered. The EventInfo313

class has undergone some evolution in xAOD, but continues to serve the same purposes.314

Auxiliary Data In C++, as it is an object-oriented language, it is natural to access the elements of a315

container as objects, and therefore to layout containers in memory as Array-of-Structures, or, in other316

words, object-wise. With the introduction of deep vector pipelines the wisdom of this layout started to317

be challenged. Laying down data as Structure-of-Arrays, or member-wise, allows GPU compilers to318

generate SIMD instructions (also known as PTX instructions) that accessed data stored contiguously319

in memory. Having all data members laying down contiguously in memory also allows compilers320

targeting current x86 processors to vectorize loops operating on these data members.321

At the same time, as any ROOT user knows well, many analysis applications only access a fraction322

of a container (or n-tuple) data. The ability to read containers member-wise (branch-by-branch) from323

disk can speed-up an analysis by orders of magnitude.324

Both these use cases are satisfied in ATLAS xAOD system in which data members of the elements325

of a DataVector are saved into separate “auxiliary store” containers. AuxStoreInternal objects326

have the member-wise memory layout that benefits vectorization, and I/O read speed.327

Clients of DataVector will not be directly exposed to these AuxStoreInternal objects, and can328

use the traditional object-wise access pattern with negligible loss of performance.329

2.1.8 Scheduling330

Event Loop The EventLoopManager is the heart of the framework, and directs the execution of331

the various framework components during the course of a job. First it initializes basic services and332

the configured algorithms, then starts these components. Next it calls execute on all configured333

algorithms as many times as there are events requested by the job configuration, or until no more events334

are present in the input file. It monitors the execution of these algorithms, and will react appropriately335

if any fail, such as by terminating execution of the current event and skipping to the next one, or by336

halting the job entirely, and attempting to exit gracefully. Once all events have been processed, it will337

stop all components, then finalize them, leaving them in the Offline state, and closing all output338

streams.339

Incidents The Incident Service is used by components to trigger asynchronous events in other340

clients, following the observer pattern. Components which are interested in a particular incident341

subscribe to it by name via the IncidentSvc. When that incident is fired, which is performed by342

calling the fireIncident interface of the IncidentSvc, all clients which have subscribed to that343

incident are called in sequence. In order to subscribe to an incident, clients must inherit from the344

IIncidentListener base class, and implement the handle method, which takes an Incident ob-345

ject as a parameter, and is called by the service when the incident is fired. The client must also tell the346

IncidentSvc of the type of Incident that they wish be informed of via the addListener interface.347

A client can susbcribe to as many incidents as is desired, but then must test the value of the Incident348

May 12, 2015 – 15:40 10

DRAFT

2.2 High Level Trigger Processing DRAFT

parameter within the handle method to implement the appropriate behaviour. Some examples of in-349

cidents are BeginRun, BeginEvent, EndEvent, AbortEvent, BeginInputFile, EndTagFile, and350

CheckIOV.351

2.2 High Level Trigger Processing352

2.2.1 Key concepts in HLT events processing353

The design and construction of the HLT framework used in Runs 1 and 2 is the result of a decade354

of R&D followed by a review [7][8][9] and the final implementation, from 2005-2007. The design355

was motivated by the online requirements and, in particular, the limitations of bandwidth and CPU356

resources. Driving concepts behind the design are incremental reconstruction and selection steps, that357

provide early-rejection, and reconstruction inside geometrical Regions of Interest (RoI) that correspond358

to part (or the whole) of the detector. These key concepts limit the reconstruction performed to the359

minimum needed to arrive at the trigger decision. This is especially important as ⇠99% of L1 triggers360

are rejected by the HLT. Rejection of events based on partial reconstruction, su�cient to disprove all361

physics signature hypotheses, is the main factor in saving HLT resources. Another key concept is362

the independence of trigger chains, which means that one trigger does not influence another. This363

provides the operational flexibility to add, remove or prescale triggers and aids analysis by facilitating364

the evaluation of trigger e�ciencies (as the product of the prescales and the e�ciencies of the L2 and365

EF chains and the L1 triggers seeding them). Also key is the ability to import o✏ine tools into the366

online environment.367

Figure 5: An illustration of the processing of three trigger elements (TE) created from a single muon
passing three L1 thresholds. In this example, only the HLT chain L2_mu6 is fully processed.

May 12, 2015 – 15:40 11

DRAFT

2.2 High Level Trigger Processing DRAFT

These requirements necessitated a number of additions to the o✏ine framework: a trigger-specific368

scheduler, the HLT steering; wrapper-algorithms (HLTAlgo), to allow online and o✏ine tools to be used369

in the online context; and Trigger Elements (TE) and Trigger Navigation, to provide context during the370

online selection and in o✏ine analysis.371

A consequence of chain independence is that separate chains are defined for each trigger threshold.372

This means that several TE can be created from a single RoI. This is illustrated in Figure 5 which shows373

that three TE are created from a single muon passing three di↵erent L1 thresholds. The diagram also374

illustrates the concept of partial reconstruction. In this example, only the HLT chain L2_mu6 is fully375

processed. The other chains are deactivated, the L2_mu4 chain by a pre-scale and the L2_mu10 chain376

by a failed trigger hypothesis. In order to avoid duplicate reconstruction in the two chains executed on377

the same RoI, the HLT employs caching of reconstructed features. The caching is implemented in the378

HLT Algorithm base class and ensures that the same reconstruction step is not run twice on the same379

input.380

Figure 6: A diagrammatic representation of a muon trigger chain illustrating the trigger elements
(green), algorithms (FEX: pink, HYPO: orange) and reconstructed trigger objects (yellow).

2.2.2 Trigger Configuration381

The trigger is configured by a menu that defines a set of trigger chains (often referred to simply as382

triggers) that start from a L1 trigger and specify a sequence of reconstruction and selection steps that383

result in the reconstructed physics objects (or signatures) required by the chain. A trigger chain might384

require a single signature (e.g., a single muon passing a p

T

> 6GeV threshold, mu6) or a signature385

May 12, 2015 – 15:40 12

DRAFT

2.2 High Level Trigger Processing DRAFT

and multiplicity (e.g., 2mu6) or a logical combination of signatures (e.g., a trigger requiring a tau386

lepton and muon, tau60+mu20). A diagrammatic representation of a muon trigger chain is shown in387

Figure 6. Chains are composed of a number of sequences. The input to and output from the sequences388

are TEs. The TE are objects providing the RoI context that are passed from the HLT Steering to the389

HLT algorithms. Reconstructed trigger objects (or features) are attached to the TE. A sequence is an390

irreducible component of the trigger processing that is uniquely specified in terms of the algorithms391

it runs and the input and output TEs. A sequence typically consists of one or more feature extraction392

(FEX) algorithms performing reconstruction and a selection step performed by a hypothesis (HYPO)393

algorithm.394

The size of the HLT menu defines the scale of the task performed by the framework. The menu395

consists of primary triggers that are the principal physics triggers, supporting triggers (e.g. orthogonal396

triggers for e�ciency measurements and pre-scaled lower threshold versions of the primary triggers),397

monitoring and calibration triggers. The latter are used to collect specialized datasets consisting of398

partial event data from a sub-set of detectors. A typical Run 1 menu consists of about one thousand399

chains and a factor of two to three more algorithm sequences (although for the majority events only a400

fraction of these are run). The trigger configuration also defines the HLT prescales. These provide an401

additional way to optimize the system for high rejection. The L2 and EF prescales are applied prior to402

the L2 or EF processing.403

2.2.3 HLT Steering404

The HLT steering is the algorithm responsible for the execution of the menu. The L1 result defines405

RoIs that form a set of TEs that seed the HLT reconstruction. Execution proceeds starting from the406

chains activated by the L1 seeds. At each step, all the sequences are executed for all of their specified407

input TEs (i.e., all the RoIs of a given type). After each step, the number of active TEs in a chain is408

tested against a multiplicity requirement to determine whether processing of that chain should continue409

or not. This process is repeated for all steps and all active chains.410

2.2.4 HLT Algorithms411

HLT algorithms are derived from Athena algorithms where the execute() method is replaced by412

an hltExecute method that is invoked with additional arguments informing the algorithm about the413

execution context (i.e., the RoI). There are three sub-classes of FEX algorithms allowing an execution414

on a single TE (FexAlgo), a combination of TE (ComboAlgo) and an algorithm allowing arbitrary use415

of all input TEs (AllTEAlgo). The later two algorithm classes allow information from di↵erent RoIs416

to be combined. The B(µµ) b-physics trigger is an example of a ComboAlgo that is executed on all417

combinations of two di↵erent muon RoIs. An example of an AllTEAlgo algorithm is the algorithm418

that combines information from all muon RoI in order to correct missing E

T

. Another AllTEAlgo419

algorithm is used to re-run jet-finding across all Jet RoI. The HLT algorithms implement caching of420

reconstructed features. If the same algorithm is invoked more than once on the same input the features421

are retrieved from the cache.422

The HLT uses a number of algorithms from the o✏ine, e.g., tracking at the EF, and integrates423

them so that they can be run on RoIs. The integration involves custom fitting for each signature and424

somewhat ad hoc solutions have been adopted. In the new framework, it should be possible to run425

o✏ine algorithms unchanged in the online environment.426

May 12, 2015 – 15:40 13

DRAFT

2.2 High Level Trigger Processing DRAFT

2.2.5 Trigger Navigation427

HLT algorithms communicate by passing Event Data Model (EDM) objects through the auxiliary struc-428

ture of trigger navigation (AlgTool). This structure implements a directed acyclic graph in which the429

nodes are TEs and the edges are the seeding relations of the HLT sequences which materialize in a430

given event. The trigger navigation is bootstrapped by the information from L1 and further extended431

during execution of HLT algorithms. EDM objects produced and requested by HLT algorithms are432

attached and retrieved from the navigation using the TE (token) passed at execution. The memory433

management of these EDM objects is left to the StoreGate service. The navigation structure is also434

queried by the HLT steering in order to provide the input TEs for sequences and in order to count mul-435

tiplicities. For accepted events the trigger navigation is serialized and saved to allow this information436

to be queried during analyses. Additionally, the trigger navigation is responsible for manipulation of437

the trigger EDM:438

1. merging collections from multiple RoIs and performing the associated book-keeping.439

2. filling the event store with empty EDM collections when the HLT algorithms that would create440

them have not run in a specific event.441

3. interfacing to the infrastructure that serializes the HLT objects that form the HLT result that is442

stored as part of the RAW event (bytestream).443

2.2.6 Optimization of Event Processing444

In order to provide early rejection, reconstruction proceeds in an incremental way. After each increment445

of reconstruction, a selection is performed. If the evaluation based on the reconstructed objects within446

the chain does not pass the selection, there is no further processing of that chain. If there are no active447

chains in the event, the event is rejected. When processing chains with signature multiplicities greater448

than one or with a logical combinations of signatures, the reconstruction may be abandoned in the early449

steps as soon as the multiplicity or combined requirements are not met. This is particularly important450

as full processing of single low-threshold trigger items could otherwise be very costly.451

Incremental reconstruction is also important to reduce data-request rates since the data needed for452

steps later in a chain are only requested if the earlier selection steps are passed. For example in the muon453

trigger chain, shown in Figure 6, muon detector information is requested and reconstructed in the first454

step and a selection is made based on this information. Inner detector information is only requested,455

reconstructed and combined with muon detector information if the earlier selection is passed.456

A further consideration is the order of execution of the sequences, i.e., step-wise or chain-wise457

processing. Step-wise processing means that step-n is executed for all chains before step-(n+1) is458

run. In the alternative, chain-wise processing, a chain is processed from start to finish (stopping if a459

selection step fails), before moving on to the next chain. In both modes the data requested and the final460

level of reconstruction are identical, but step-wise processing allows an optimisation of data-access by461

grouping data-requests from di↵erent chains and across RoI. This is possible because many chains are462

arranged similarly, in that they perform similar reconstruction in the same chain steps. For example463

electron and tau chains both perform calorimeter reconstruction in the first step and inner detector464

reconstruction in a later step. The execution of a given step is preceded by a pre-request for the data465

fragments that are needed in that step. Given this information, the framework ensures that the data466

requests to ROSes are performed only once for all potentially needed ROBs and, therefore, the request467

rate is reduced (one ROS serves several ROBs). The use of step-wise processing gave an important468

May 12, 2015 – 15:40 14

DRAFT

2.2 High Level Trigger Processing DRAFT

reduction in data-request rates in Run 1 and Run 2. But it imposes a synchronisation across chains469

that would constrain the parallel scheduling of algorithms in the new framework. It would be possible470

to preserve the advantage of grouping data-requests in a chain-wise processing model if data for all471

steps and all RoI were pre-requested prior to the start of event-processing. But this would significantly472

increase the rate of data requests for some systems, particularly the inner detector. While upgrades to473

the ROS and network may make data-request rate limits less of a constraint in Run-3, the system should474

also scale to Run-4 where L1 rates will be significantly higher. It is, therefore, important that the new475

framework has the flexibility to support both step-wise and chain-wise processing modes to enable an476

overall optimisation of the system to be made based on operational experience.477

Other optimizations have also been implemented, i.e., the order in which the chains are processed is478

chosen so that those requesting the biggest chunks of data are executed first (e.g., jets before electrons).479

2.2.7 Integration with Monte Carlo production480

The HLT (and L1) trigger run as part of MC production. Since the HLT has been developed within the481

Athena framework, it is relatively easy to construct a combined job that runs both trigger and o✏ine482

reconstruction. In this case, the HLT reconstruction (HLTSteering) is one of the algorithms of the of-483

fline algorithm sequence. This mode of operation was used until recently when, due to virtual memory484

constraints and the necessity to run trigger and reconstruction using di↵erent software releases, MC485

jobs were split into two with the trigger running before the o✏ine reconstruction. Although separate486

o✏ine and trigger jobs will continue to be needed in specific cases, the ability to run trigger and o✏ine487

reconstruction together should be preserved within the new framework. As described above, there are488

additional requirements associated to the scheduling of HLT algorithms (such as RoI context) on top489

of the requirements for running o✏ine algorithms. A single component of the new framework (the490

scheduler, §3.1.2) should take into account all these requirements in order to support the scheduling of491

both o✏ine and HLT algorithms.492

2.2.8 Additional Trigger requirements493

The trigger imposes requirements of the framework that are in addition to those of the o✏ine uses494

cases. The key additional requirements and constraints are summarized below:495

1. Soft real-time operating conditions: Run 1: L2 40 ms/event, EF 4 s/event; Run 2: 240 ms/event.496

2. Rejection: Full HLT reconstruction is only performed for approximately 1 in 100 L1-accepted497

events.498

3. Early termination of chain processing: Reconstruction terminates as soon as the reconstructed499

objects fail a selection step.500

4. Reconstruction inside an RoI: The trigger performs partial reconstruction of the event inside501

geometrical regions. This greatly reduces the per-event execution times and hence required farm502

CPU resources since the RoI correspond to typically only about 10% of the full event. It also503

reduces the amount of the data which needs to be requested from the ROSes in order to make the504

decision. However, by Run 3 ROS upgrades could permit event building at the full L1 rate.505

5. Forced accept: Possibility for a chain to force acceptance the event.506

6. Error handling: Possibility for an algorithm to trigger routing of the event to the debug stream507

(algorithm returns an error code containing the desired action and reason).508

May 12, 2015 – 15:40 15

DRAFT

DRAFT

7. Streaming: The trigger routes events to di↵erent file-streams dependent on the trigger result. The509

framework should support di↵erent streaming policies such as inclusive and exclusive streams510

and specialised streams containing partially built events.511

8. Processing of many runs by a single job: Typically several runs will be processed between the512

configure and unconfigure state transitions. However, it is also possible for a new job to be started513

part way through a run, e.g., in the case that errors cause a HLT node to be rebooted.514

9. Conditions: Most conditions changes only permitted at prepareForRun: during Run 1 and515

Run 2, most conditions updates only occur at the prepareForRun state transition. Only menu516

pre-scale changes and very limited small conditions changes (a limited subset of conditions fold-517

ers that were of small size, e.g., beamspot position update) were permitted during a run and518

only at a luminosity block boundary. Configuration from a database, rather than from python.519

Configuration identified by three integer keys: Menu key, L1 prescale key, HLT prescale key.520

3 Requirements for Event Processing521

In the following description of framework elements, we consider that any framework element or feature522

that is not explicitly stated to be optional is mandatory. These elements and features will provide the523

necessary coherent architecture to support the algorithmic code and tools needed by ATLAS. This set524

of features should eliminate the need for algorithmic code to duplicate or circumvent the framework.525

Within the text we occasionally make some recommendations about patterns for utilising the frame-526

work to its best advantage.527

3.1 Required Framework Elements528

The model for event processing in HEP is mature and has existed for many years across di↵erent529

experiments. Concurrency does not alter the model for how events themselves are processed, which is530

illustrated graphically in Figure 7 for the o✏ine case.531

After some setup phase (initialization, including data-dependent initialization that requires access532

to the event stream), events are processed through a series of algorithms, which produce new derived533

data products. These algorithms can make use of general pieces of code, encapsulated as tools, if they534

are private to the algorithm, or as services, if they can provide data to all algorithms and events. After535

event processing has completed (and selected events and data products have been serialized), the job536

performs some finalization actions.537

Use cases can exist for some non-event based communications between framework elements, which538

are handled using schedulable incidents (§3.1.9). However, as discussed in §3.3, any use of incidents539

should be minimized.540

For use cases online, additional features are required, as outlined in §2.2.8.541

3.1.1 Whiteboard542

The whiteboard (or event store) is a service and is the main mechanism for algorithms and tools to com-543

municate as Event Data Model (EDM) objects are exchanged through the whiteboard. The navigation544

structure plays a similar role for the HLT, but with an additional RoI context. Harmonization between545

these two components is an essential part of the new framework.546

1. The whiteboard is used to store data objects and exchange them between components.547

May 12, 2015 – 15:40 16

DRAFT

3.1 Required Framework Elements DRAFT

Services
Services

Services

Alg

Initialisation

Services

Alg

Alg

Alg

Alg

Tool

Tool

Tool

Tool

Finalisation

Tool

Schedulable
Incident

Schedulable
Incident

Scheduler

Parallel
Alg

Alg

Figure 7: Schematic of o✏ine framework elements and event processing workflow, showing algorithm
and in-algorithm parallelism (for clarity event parallelism is not shown here). Note that although flow
is illustrated as one algorithm ‘flowing’ into another, this is really acheived through data objects that
are stored in the whiteboard service. Execution of algorithms and incidents is under the control of the
scheduler.

May 12, 2015 – 15:40 17

DRAFT

3.1 Required Framework Elements DRAFT

2. Algorithms may record objects in the whiteboard as well as read existing objects. Algorithms548

may modify objects that they have created during their execution or that are being prepared as549

part of an algorithm sequence (see §3.1.4).550

3. Modifying objects in the whiteboard is ideally limited to augmentation: adding new information551

to an existing object. Overwriting existing data or deleting parts of an object’s data is permitted.552

4. Deletion of an object in the whiteboard is permitted, which allows algorithms and tools to use553

the whiteboard as a ‘scratch’ space to communicate data between themselves.554

(a) Care should be taken not to delete objects used by downstream algorithms.555

(b) The whiteboard may optionally be configured to delete objects when the last algorithm556

which uses them has run. This will reduce the event store memory footprint during event557

processing.558

(c) Contrary to this, the whiteboard may be configured to disallow the deletion of objects.559

5. Data objects will be marked as immutable after all declared algorithmic writers have been exe-560

cuted.561

6. All access to EDM objects should be through the whiteboard API.562

7. A view object, with the same interface as the whiteboard is available. It contains a selection of563

the data objects in whiteboard, usually in a particular geometrical region. Each algorithm or tool564

should be able to operate on a view in the same way as the whiteboard. Views can be created by565

any component and can be interconnected by N-to-N relations.566

8. Data for multiple events and di↵erent views can exist in the primary whiteboard at the same time.567

9. After an event has been processed the framework will clear the whiteboard of that event’s data.568

Additional requirements on the e�ciency of the whiteboard can be made:569

1. The whiteboard must be accessible by concurrent threads: data race conditions expressed through570

data dependencies will be prevented by the scheduler, and concurrent read operations must be571

supported.572

2. Internal data storage in the whiteboard should be optimized to allow e�cient access and pro-573

cessing on modern hardware, taking into account the memory hierarchy. This means that storage574

of vectors or array of contiguous plain old data objects must be supported. Note that it is the575

responsibility of algorithm writers to design e�cient objects, bearing in mind how the data will576

be used. (This development should have a very high priority in the upgrade as adaptations to new577

EDM are potentially among the most disruptive. The Run2 xAOD is a good starting point.)578

3. Internal data storage should also allow e�cient transport of data blocks to/from accelerator de-579

vices (§3.4.3) with minimum overheads for conversion between layouts. (This item is optional,580

in so far as actual use of accelerators remains undecided.)581

4. The implementation of event views must also add minimum overheads to processing, when com-582

pared with direct access to the same underlying memory locations.583

May 12, 2015 – 15:40 18

DRAFT

3.1 Required Framework Elements DRAFT

All of the above points should be addressed by early demonstrators of the whiteboard and of the584

event views. In particular, e�ciencies should be compared between direct memory access to an optimal585

layout and access via the whiteboard, with and without, event views. Overheads of a few percent will586

be considered acceptable.587

3.1.2 Scheduler588

The scheduler controls the use of available resources that need to be marshalled to complete a job.589

Specifically, it will control the start of each event though the processing chain and determines the590

order of algorithm execution during event processing. The scheduler also controls execution of other591

framework elements that may arise in a less predictable fashion: schedulable incidents (§3.1.9), such592

as service triggered conditions data preparation (§3.4.2). The scheduler’s general goal is to maximize593

throughput, while respecting the configured constraints (e.g., the maximum number of events in flight,594

or certain algorithms or resources that are not thread safe). However, the scheduler is a plugable595

component of the framework, so specialist schedulers are possible.596

1. The scheduler is a regular component of the framework, consisting of exchangeable elements597

configured in a similar way to any other component.598

2. The scheduler keeps track of data objects in the whiteboard, configured algorithms in the job and599

defined sequences of algorithms.600

3. The scheduler will mark algorithms as executable once all their specified resource requirements601

are satisfied. These will almost always include data dependencies, but additional control flow602

conditions may be specified as well as any special requirements (e.g., use of a thread-unsafe603

external library or a special piece of hardware). Control flow is important for implementing early604

rejection in the trigger (e.g., object multiplicity is one example of a possible extra condition).605

Control flow conditions can also be signalled by algorithms in the case of errors.606

4. The scheduler will execute ready algorithms or sequences by submitting them to an execution607

engine, which may have its own task queue.608

5. The scheduler will only execute an algorithm once for a particular data input. An algorithm can609

be scheduled multiple times per event if it operates on di↵erent inputs each time (i.e., data from610

di↵erent RoIs).611

6. It will be possible to schedule parallel execution of algorithms within the same, or di↵erent,612

events. This includes:613

(a) Di↵erent algorithms running concurrently.614

(b) Copies of a particular algorithm concurrently analysing data from di↵erent events.615

(c) Copies of a particular algorithm concurrently analysing di↵erent data inputs from within616

the same event.617

In all cases this must be moderated by the thread-safety and clonability properties that each618

algorithm declares.619

7. If an algorithm modifies a data object in the whiteboard it will be scheduled before any algorithms620

that only read the object (unless that algorithm is bound into a sequence, §3.1.4).621

May 12, 2015 – 15:40 19

DRAFT

3.1 Required Framework Elements DRAFT

8. It should be possible to disable concurrency in the scheduler either by configuration or by pro-622

viding a replacement trivial scheduler.623

9. The state of the scheduler should be recordable. It should be possible to replay the sequence of624

algorithms back into the scheduler to help with debugging.625

10. The scheduler’s handling of errors propagated from algorithms should be configurable, e.g., error626

conditions could abort processing of a view, prompt an event abort, cause the event to be written627

to a special error stream or cause a job abort.628

11. It must be possible to run trigger and o✏ine algorithms in the same job.629

12. Schedulable incidents will be processed and handled in a timely manner and will not cause overall630

throughput to drop unnecessarily (if processing if blocked because of incidents requiring slow631

external services to respond this is considered unavoidable from the scheduler’s point of view).632

3.1.3 Algorithms633

The algorithm is the basic schedulable unit within the framework event loop.634

1. Algorithms manipulate data objects in the whiteboard. Data objects to be accessed and created635

will be published by the algorithm when it is initialized. Data dependencies of all tools used by636

an algorithm will be inherited by the algorithm.637

2. The recommended way of adding objects to the whiteboard is to prepare the object privately,638

then to add it to the whiteboard when the object is ready. If needed, modifications to compound639

objects can be allowed once they are in the whiteboard, e.g., objects can be added to a collection640

even after registration. Multiple write operations (create/modify) of the same pieces of data in641

the whiteboard by the same algorithm are permitted, but discouraged.642

3. All levels of thread safety and/or clonability are supported for algorithms:643

(a) Ideally algorithms should be thread safe, allowing multiple instances to be used freely by644

the scheduler.645

(b) If algorithms require specific configuration, di↵erently configured instances should be in-646

dependent of one another. This allows the scheduler to clone multiple instances for parallel647

running.648

(c) Algorithms can also be thread-unsafe and uncloneable. Though generally undesirable, this649

will allow for a gradual migration of algorithmic code to a new framework so must be650

supported.651

(d) In order for an algorithm to run concurrently, all the components that it calls, such as tools,652

or external libraries, must also be concurrent capable. This parallelizability of framework653

components must be communicable to other components.654

In all the above cases, algorithms must declare their level of thread safety and clonability to the655

framework.656

4. Algorithms may utilize parallelism internally, but should always do so using concurrency fa-657

cilities provided or brokered by the framework (to avoid over-commitment of resources). An658

algorithm should declare that it uses internal parallelism at initialization.659

May 12, 2015 – 15:40 20

DRAFT

3.1 Required Framework Elements DRAFT

5. Since there can be a number of views in an event, algorithms are not be limited to a single660

execution per event. Algorithms should be capable of working on fragments or subsets of event661

data. The same fragment should be processed by the tools and services it utilizes to perform the662

task.663

6. It must be possible to schedule multiple instances of an algorithm with di↵erent configurations,664

then have the scheduler treat these as independent algorithms. (E.g., to allow optimised configu-665

rations of the same algorithm for di↵erent trigger sequences.)666

7. Configurable properties of an algorithm may not change after the configuration step; nor may an667

algorithm change the properties of tools it owns or services it uses. Algorithms should have well668

designed and meaningful configurable properties.669

8. Algorithms should be equipped with appropriate monitoring, providing information in greater670

detail than that published to the whiteboard and su�cient to validate the correct operation of the671

algorithms and debug problems.672

9. Algorithms should be able to return a detailed error status to the scheduler, with enough infor-673

mation to allow appropriate error handling to be performed by the framework.674

3.1.4 Sequences675

A sequence is a list of algorithms that must be executed in order.676

1. Sequences are to be used when several algorithms modify the same data object and the order of677

execution plays an essential role.678

2. A single algorithm can be included in multiple sequences.679

3. A sequence should be treated as a single task by the scheduler.680

Sequences may also incorporate algorithms that only read a particular data object (but may need to681

do so before a later algorithm in the sequence modifies them).682

3.1.5 Tools683

Tools should be viewed as configurable parts of an algorithm allowing the implementation of data684

manipulation in a generic way (such that it is useful for multiple algorithms and merits encapsulation).685

The execution of tools is not dictated by the scheduler.686

1. An algorithm may delegate the execution of a specific task to any number of tools. Instances of687

tools may not be shared between algorithms (i.e., public tools are prohibited).688

2. Whether tools are executed, and in what order, is determined by the parent algorithm. Tools689

called by the parent algorithm may themselves call other tools.690

3. When an algorithm is cloned, the tools it owns will be cloned as well.691

4. In order to maximize the ability to run concurrently, Tools should be stateless and thread safe692

after their configuration. If a tool is not stateless and thread safe, then any other component693

which uses it, such as an algorithm or another tool, cannot be run utilising a level of concurrency694

that the tool does not support. This information must be communicable to the tool’s callers.695

May 12, 2015 – 15:40 21

DRAFT

3.1 Required Framework Elements DRAFT

5. The EDM data exchange between tools and components other than its parent algorithm (or in-696

termediate tools) happens through the whiteboard. A tool’s caller is allowed to pass information697

directly to a tool as method arguments using the tool’s interface.698

6. Tool dependencies on whiteboard data are declared and will be propagated upwards to the parent699

algorithm. This propagation will work also in the case of nested tools.700

7. Unlike a service (§3.1.6), a tool is only used by its parent algorithm or its parent tool.701

8. Like algorithms, tools may also utilise parallelism services managed by the framework.702

3.1.6 Services703

Services control access to resources that are necessarily shared between multiple events and will be704

accessed from di↵erent running threads. Consequently, each service may only have a single instance705

within the framework. Any service must be accessible by concurrent threads, with any conflicts man-706

aged internally. With the notable exception of the whiteboard, services may not be used to pass data707

between algorithms – any algorithm’s interaction with a service should be independent of previous708

interactions. Example service tasks include:709

1. Event related storage services (§3.1.1)710

2. Disk I/O711

3. O✏oading tasks to co-processors712

4. Database and conditions access (§3.4.2)713

5. Giving access to other large static data structures in memory, e.g., geometry or magnetic field714

map.715

When an algorithm or tool interacts with a service a suitable event context is passed, so that the716

service can return the correct objects or values (e.g., the correct conditions data for that event, §3.4.2).717

3.1.7 Auditors718

Auditors are framework components that monitor resource consumption of algorithms. They gather719

and collate operational performance data, such as execution time, memory consumption and name.720

They are required as part of the overall monitoring infrastructure provided by the framework.721

3.1.8 Converters722

Converters provide technology specific implementations of the I/O layer (see §3.4.1), allowing clear723

separation between the persistent and transient representations of the data. By implementing abstract724

interfaces, and using the Conversion Service, clients are able to stream object states and read and725

write data without explicit knowledge of the data format on disk or over the network. Converters are726

replaceable components, such that as technologies evolve, they can be replaced with minimal impact727

on user code.728

Converters should be configurable at runtime, like any other framework component.729

May 12, 2015 – 15:40 22

DRAFT

3.2 Overall Framework Features DRAFT

3.1.9 Schedulable Incidents730

A schedulable incident can be triggered by other framework elements and causes a sequence to be731

added to the scheduler’s task list. Thus, operations that must happen upon reaching a condition not732

known to the primary data/control flow (e.g., opening or closing a file) will be executed in a timely733

fashion, but under the control of the scheduler.734

As noted in §3.3, use of incidents is strongly discouraged in favour of data/control flow scheduling735

as the framework element that triggered the incident may have to block until the incident handling task736

has been completed.737

3.2 Overall Framework Features738

There are some requirements concerning all elements of the framework. They are listed here.739

1. The state machine of the framework should be mapable onto the online (TDAQ) state model.740

2. Development of trigger specific algorithms should happen within the o✏ine framework. Only741

a small number of exchangeable components should be needed to make the system suitable for742

running online.743

3. Any dependencies between components for configuration, initialization, finalization or termina-744

tion need to be clearly expressible, so that any constraints may be respected. This allows for745

possible parallelization of these tasks. Components should not rely on an ordering which is not746

derivable from a data or interface dependency.747

3.3 Framework Rationalisation748

Compared with the current implementation of ATLAS software in the current version of Gaudi/Athena,749

the following specific changes to the framework should be adopted:750

• Public tools should be dropped from the framework and replaced with:751

– Private tools (or now just tools) where inter-algorithm communication is not necessary.752

– Services for the use cases where data is provided to multiple algorithms.753

– Communication via the whiteboard where data objects are prepared via a sequence of algo-754

rithms (specifically this pattern replaces the current ATLAS pattern of using a public tool755

to pass data between a sequence of algorithms).756

• Sub-algorithms should not be supported. All use cases can be covered with algorithms and757

sequences.758

• Incident handling becomes a process handled by the scheduler, but is strongly disfavoured when759

data/control flow can achieve the same result.760

3.4 Additional Details761

3.4.1 Input/Output Layer762

Input and output pose fundamental challenges to the e�cient exploitation of emerging computing plat-763

forms. Input and output are points of serialization, and I/O bandwidth has not scaled with processing764

May 12, 2015 – 15:40 23

DRAFT

3.4 Additional Details DRAFT

power or core count. Applications whose computational elements may be scalable to very large num-765

bers of CPUs will lose their scalability if they are in fact I/O bound. Even when this does not happen,766

a framework that achieves high throughput by creating a substantial post-processing burden (e.g., in a767

later, possibly complicated, merge step) has achieved that throughput only nominally.768

1. The I/O layer should support variable numbers of readers and writers, both to provide a means to769

match I/O to processing capacity and to allow adaptation to a range of deployment environments.770

2. The framework should be configurable to support I/O-intensive as well as CPU-intensive pro-771

cessing, without the I/O layer itself being the bottleneck.772

3. While the architecture of I/O components may be complex, it should be factorized from the ar-773

chitecture of the scheduler: for example, readers and writers (event selectors and output streams)774

should be schedulable in essentially the same way as any algorithm.775

4. The framework should be agnostic to the nature of its data sources and sinks, i.e., to whether data776

come from local or remote storage media or from specialized readout devices, and to whether777

they are written to storage or to local or remote processes. I/O layer components will deal with778

the necessary specializations and should be developed as required (thus specific components will779

be optional).780

5. The I/O layer (together with the whiteboard) should isolate the algorithms, tools, services ac-781

cessing data from the persistency technology used behind the scenes by using converters (§3.1.8).782

Current data formats, including bytestream, xAOD, and the POOL formats, need to be supported.783

Any explicit dependency on a particular persistency technology should be avoided as much as784

reasonably possible.785

6. Input and output infrastructure must be capable of respecting semantic constraints on data orga-786

nization, such as not interleaving events from di↵erent runs or run segments (luminosity blocks).787

7. The framework needs to provide su�cient bookkeeping to ensure that all events in semantically788

meaningful units have been processed, and may be required to provide more detailed bookkeep-789

ing in jobs that filter events. The I/O layer should facilitate such accounting, and should provide790

a means to associate metadata with event samples.791

8. The I/O layer should exploit similarities in HLT and o✏ine data access where possible. There792

are parallels between data requests to readout systems and I/O requests to storage, as well as793

parallels between selective RoI retrieval and selective (partial event) retrieval from disk.794

3.4.2 Time Varying Data795

Data for processing events varies naturally though time. First, event data itself is time dependent, with796

each event occuring at a di↵erent time. This implies that associated metadata, describing the state of797

the detector, or other relevant quantities, will also change for each event. This data itself can come from798

various locations: local disk, a database connection or another network source. In addition, the data799

needed by the event loop may require some derivation or calculation from the raw data supplied to the800

running job; such calculations may themselves require additional pieces of time varying data.801

Thus, time varying data should be supplied by a service, which is able to take event context into802

account. The time varying data itself may be stored in a whiteboard, separate from the event store.803

May 12, 2015 – 15:40 24

DRAFT

3.4 Additional Details DRAFT

Alg Tool

Cond
Service

Data Prep
Step 1

Cond
Whiteboard

External
Source

Data Prep
Step 2

Alg

Alg

1

2, 7, 9

Scheduler

Preparation
Sequence

3

4

5

6 8

9

Figure 8: Schematic of time varying data retrieval: a tool asks for a piece of processed conditions data
from the conditions service (1); the service checks the data is not found in the conditions whiteboard
(2); the service then schedules a data preparation sequence (3), consisting of two steps; these steps
are run by the scheduler (4), requesting the requisite raw data objects from the service itself (5); these
objects are recovered from an external source and placed in the conditions whiteboard (6, 7); the data
preparation components then run to prepare the calibrated data, utilising the conditions whiteboard in
the usual way (8); the calibrated data is returned to the calling tool (9).

The service should be able to some trigger data preparation component, which can be used to ready804

the data as needed and these components can have dependencies in the usual way. Running this data805

preparation step will be delegated to the scheduler, which will handle this task in the same way as any806

schedulable incident, §3.1.9. This scheme is illustrated in Figure 8.807

The service associated with the time varying data should manage the lifetime of the data in its808

whiteboard. Data may be retired after some time after it is last used or to ensure that the space occupied809

does not exceed some threshold.810

3.4.3 Accelerator Devices811

Co-processors, as noted earlier in §1.2, are increasingly an important part of delivering high perfor-812

mance computing as a part of exascale challenges. The diversity of devices leads to complications in813

coding paradigms, programming language selection, hardware aptitude to tasks and e�ciency tuning;814

each of them typically requires a di↵errent approach. Even if ATLAS does not require the existence815

of co-processors for its processing, due to the shared nature of compute farms, and the existence of816

opportunistic resources, it is likely that co-processor devices will be available for framework to use.817

Therefore the new framework should be able to make use of co-processors if they are present. Thus818

framework must be able to:819

1. Function without the existence of co-processor.820

2. Have a hook facility that will enable interaction with co-processors that are available at rumtime.821

Actual use of specific co-processor hardware is somewhat outside of the scope of this document,822

however we list here the following desirable, but optional, features should co-processors become a823

significant part of ATLAS computing:824

May 12, 2015 – 15:40 25

DRAFT

3.4 Additional Details DRAFT

1. Handle di↵erent types of hardware at runtime such as Xeon Phi, GPGPU, FPGAs or other new825

co-processors that might be introduced in the future.826

2. Make use of multiple devices at the same time, such as embedded accelerators and add-on cards,827

taking their capabilities and processing powers in to account.828

3. Allow event bunching to improve the e�cient use of hardware, since o✏oaded tasks from a829

single event or algorithm might not have enough work for a co-processor to o↵set data transport830

costs.831

4. Take event properties into account to do o✏oading and reduce overheads. For example, it may832

decide to o✏oad events with high number of hits (tracks) to co-processor while process others in833

CPUs.834

5. Support shared or partial use of the co-processors when the co-processor is shared between multi-835

ple processes or hosts as it is possible to share one co-processor among many hosts for e�ciency836

and cost reasons.837

6. Use co-processors in the most optimal way (hybrid, accelerator or as independent processor838

modes). Depending on the properties of hardware and availability of the algorithms, it may839

choose to use the co-processor for doing sub-algorithm processing, such as loops; sub-event840

processing, such as a set algorithms; or full event processing with one or many events.841

7. Support libraries and languages that are not natively used in framework itself as long as they842

are ABI compatible. For example, the framework should be able to use algorithms written and843

compiled with CUDA or any other compiler or language.844

3.4.4 Configuration845

Configuration of a complex software framework is itself a complex matter. Historical experience shows846

that schemes that are too simple (e.g., ASCII or plain config files) rapidly fail to scale to the appropriate847

level. However, schemes that are too flexible, allowing any parameter to be changed at any time during848

the configuration process, can become impenetrable and entagled. This situation is particularly harmful849

to ATLAS as it erects a significant barrier for new users and developers of the framework. Given850

the turnover of ATLAS members, a comprehensible configuration system is a very important part of851

making the ATLAS framework more accessible.852

Thus a new configuration scheme should:853

1. Use a uniform scheme for each part of the job configuration (tools, services, data handles, etc.)854

as far as possible.855

2. Be flexible enough to compactly enable dependent configuration of multiple framework compo-856

nents.857

3. Implement a heirarchical scheme where general settings cascade in a well defined way to specific858

options, enhancing the comprehensibility of the configuration.859

4. Allow for the visualization of a job configuration (optional item).860

5. Ensure that components are configured in a well defined and reproducible way and signal a861

warning (or error) if a configured component’s setup changes unexpectedly.862

May 12, 2015 – 15:40 26

DRAFT

3.5 EventService DRAFT

6. Be able to serialise a configuration, into a langage neutral format.863

7. Allow reloading of a previously generated configuration from multiple sources (file, database,864

network source, etc.).865

8. Allow a job to be configured from a de-serialised configuration, with then a few further changes866

made at runtime (e.g., to change an input file).867

We would recommend the continued use of python as the most generic configuration layer, but with868

the adoption of more structured componements to achieve the above requirements.869

3.5 EventService870

The ATLAS event service changes the granularity of jobs from files to events. Events, or event ranges,871

are sent to Athena running in a client mode, somewhat like the configuration of the HLT. Input data872

is then read event by event and outputs are shipped o↵ the processing node in a timely fashion for873

downstream merging. It o↵ers advantages when running on opportinistic resources, such as some874

clouds or on HPCs and can increase flexibility when defining the number of events to be processed875

in a job. It also allows for a ‘mixed mode’ deployment of Athena on many-core architectures, where876

multi-process and multi-threading are used at the same time.877

The principal points for a future framework, when considering the deloyment of Athena in an event878

service mode, are:879

1. Starting Athena in a ‘client/server’ mode should be simple, with the client scheduler processing880

events as they arrive and not terminating the job until a specific ‘stop’ signal is received from the881

server.882

2. Event reading should be handled more e�ciently by the new I/O layer, which can then be agnostic883

to the backend delivering event data.884

3. Similarly, consolidation of outputs at the server can be managed better by a single I/O writing885

service that reads events over the network and manages merging on the fly as the outputs are886

serialised. This server may be a di↵erent process from the server reading input event data from887

storage.888

4. In all cases metadata for the output files needs to be handled correctly, taking into account that889

events may be far more unevenly processed than in the case that parallel processing occurs on a890

single machine.891

3.6 Code Evolution892

When considering the requirements that ATLAS has for a new framework, it is necessary to bear in893

mind the very considerable amount of legacy code that ATLAS has developed before and during LHC894

data taking. While some code will naturally be deprecated and new code will replace it, we still895

anticipate a considerable amount of code will need to be migrated to the new framework.896

The di�culty, or ease, with which such a migration can be performed will have a very significant897

impact on the e↵ort ATLAS requires to move a new framework into production and, thus, on the overall898

success or failure of such an endeavor. Therefore this aspect of the framework, ease of migration,899

becomes itself an important requirement.900

May 12, 2015 – 15:40 27

DRAFT

DRAFT

We therefore identify the following as being important requirements on how the framework inter-901

acts with ATLAS code that exists today:902

• The framework must present interfaces that match those of the current Gaudi/Athena framework.903

• Where needed, interfaces that o↵er better integration with the new framework (e.g., a parallel904

algorithm class) should be introduced without removing existing functionality.905

• Existing algorithms and tools should need only be modified to remove behaviour prohibited906

by the new framework. The scheduler should control parallelism and concurrency such that907

these components will then function correctly, even when their implementations cannot be run in908

parallel.909

• The framework and interfaces must fulfill both trigger and o✏ine use-cases. Some changes will910

be required align trigger and o✏ine interfaces allowing o✏ine components to be used directly in911

the trigger.912

In so far as the current usage of Gaudi/Athena is not compatible with the envisaged evolution,913

interface migration should be undertaken even in the current code. A good example of this is the914

ongoing migration of access to StoreGate to using data handles and the migration of tool and algorithm915

base classes to AthAlgTool and AthAlgorithm. Even in the parallel framework, eventual deprecation916

of older interfaces should be considered in order to prevent code bloat and maintain a healthy code base.917

If these points are adhered to, then a gradual and incremental evolution to the concurrent frame-918

work, with the minimum possible code evolution, will be made easier.919

4 Timescales920

The timescale of future framework development is primarily driven by the time at which ATLAS needs921

to have the new framework in production, with migration of the algorithmic code completed and vali-922

dated.923

From the trigger side, this date is set for LHC Run 3, which is currently scheduled for 2020 [10].924

As it is expected that the migration of algorithmic code is a very substantial undertaking, this would925

have to begin in 2018. Thus the new framework must be delivered and production ready by the end of926

2017.927

This would then imply the following rough outline for framework development:928

• 2015 Q1-2 Decision on core technological solution and framework design.929

• 2015 Q3-4 Initial framework prototyping, giving the ability to run basic tests by end of year.930

• 2016 Continued development of framework, working in tandem with the evolution of a limited931

set of susbystem algorithms.932

• 2017 Refinement of framework and bug fixes, gradual opening to more use cases and further933

development as necessary.934

In the group’s opinion the framework development should endeavour to work with real ATLAS935

algorithmic code at a very early stage, so as to ensure that development is driven by the requirements936

found from real event processing. It should also be the case that algorithmic code should avoid making937

unnecessary requirements on the framework and so close cooperation with framework developers will938

help to optimise use of the framework’s existing features to satisfy event processing requirements.939

May 12, 2015 – 15:40 28

DRAFT

DRAFT

5 Conclusions940

5.1 Recommendations941

The current evolution of hardware is forcing software to become more concurrent. For ATLAS to942

continue to make e�cient use of computing resources that are available, it is therefore necessary for our943

software to evolve towards concurrency as well. Up to now, ATLAS event processing has been naturally944

parallelized at the event-loop level. A piecemeal evolution of parts of the algorithmic code, without945

proper framework support, would not be an e↵ective way to proceed. Even when algorithmic code can946

utilise fine-grained loop-level concurrency this will not open up enough parallelism to properly exploit947

multi-core devices, due to Amdahl’s Law (however, as we have stressed this paralleism is important948

to also exploit, but will be greatly aided by proper framework support). Therefore, we conclude that949

ATLAS should evolve its framework towards multi-threaded and multi-process execution of events and950

of algorithms within events. As this process will involve substantial rewriting of framework elements,951

we also highly recommend direct support for ATLAS HLT use cases in the framework. We believe952

that the technical challenges in doing this, while considerable, do not prevent ATLAS from taking this953

opportunity, which will benefit the long term health of the software by providing better core support954

and widening the developer base. Aspects of HLT framework support may also prove useful for future955

o✏ine developments (e.g., event views).956

The group has outlined the key requirements for this framework evolution in this document. In gen-957

eral, we recommend retaining the core design principles behind the current framework, but extending958

these to better incorporate requirements from the HLT, and better accomodate concurrent execution.959

We should adopt as many practical simplifications as possible, which both helps implement concurrent960

execution and achieve code maintainability. Certain highly desirable features, such as thread-safety in961

algorithms, are considered optional. This is mainly to ease the transition to a multi-threaded frame-962

work. However, time critical algorithims and tools must evolve quickly to a clonable or thread-safe963

state to reap the benfits of concurrency.964

Evolution of the framework for the start of Run 3 does not give a lot of time for the design and965

development phases, considering the large quantity of existing code that must then be migrated or re-966

implemented. Therefore the next steps in the future framework process should be decided on quickly.967

5.2 Observations968

We make some final observations that may help to guide further progress:969

• The Gaudi framework has not proved to be a limiting factor for ATLAS in Run 1, nor in prepara-970

tions for Run 2. Therefore, we believe that evolving the current Gaudi/Athena framework towards971

concurrency is a good choice (especially considering the matters of code migration, §3.6). An972

evolution of Gaudi also o↵ers continued collaboration with LHCb and CERN SFT, which is a973

substantial benefit.974

• The amount of work needed to implement a new framework should not be underestimated. It975

will take a considerable number of skilled developers to evolve the framework, even given the976

progress made in the GaudiHive demonstrator.977

• Most of the di�culties in transitioning to e�cient concurrent processing come from the current978

algorithmic code and the data structures that are used. Thus, a substantial e↵ort will be required979

for algorithmic changes and implementing new, improved, design patterns. Old code should be980

aggressively deprecated and backward compatibility should not limit future evolution.981

May 12, 2015 – 15:40 29

DRAFT

REFERENCES DRAFT

• To achieve substantial in-algorithm parallelism, we note that in current ATLAS reconstruction982

(ttbar, release 20.1.2) more than 75% of the event loop CPU time is accounted for in the top983

12 algorithms (of a total of 189). Thus parallelising these algorithms can potentially reduce the984

needed number of events in flight by a factor of 4, with the same number of cores kept occupied.985

This should make parallelism on devices up to some 100 cores practical.986

• A considerable investment in training for existing and new developers will be required.987

Acknowledgements988

The authors of the report would like to acknowledge helpful input and discussions with Will Buttinger,989

Dmitry Emeliyanov, Benedikt Hegner, Nils Erik Krumnack, Walter Lampl, Rolf Seuster, Scott Snyder,990

Vakho Tsulaia, Peter van Gemmeren.991

References992

[1] M. Clemencic, B. Hegner, P. Mato, and D. Piparo, Journal of Physics: Conference Series 513993

no. 5, (2014) 052028. http://stacks.iop.org/1742-6596/513/i=5/a=052028.994

[2] B. Hegner, P. Mato, and D. Piparo, Nuclear Science Symposium and Medical Imaging995

Conference (NSS/MIC), 2012 IEEE (2012) 2003–2007.996

[3] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, Commun. ACM 55 no. 4,997

(2012) 55–63. http://doi.acm.org/10.1145/2133806.2133822.998

[4] Mato, P., et al,. https://inspirehep.net/record/928960/files/lhcb-98-064.pdf.999

[5] G. Barrand, I. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, et al., Comput.Phys.Commun. 1401000

(2001) 45–55.1001

[6] P. Calafiura, C. G. Leggett, D. R. Quarrie, H. Ma, and S. Rajagopalan, CoRR cs.SE/03060891002

(2003). http://arxiv.org/abs/cs.SE/0306089.1003

[7] J. Haller, R. Stamen, G. Comune, and C. Schiavi, Tech. Rep. ATL-COM-DAQ-2006-023,1004

CERN, Geneva, Apr, 2006.1005

[8] N. Berger, T. Bold, T. Eifert, G. Fischer, S. George, J. Haller, A. Höcker, J. Masik,1006

M. Zur Nedden, V. Pérez-Réale, C. Risler, C. Schiavi, J. Stelzer, and X. Wu, Tech. Rep.1007

ATL-COM-DAQ-2007-020, CERN, Geneva, Jun, 2007. Poster presented at RT07. Paper1008

submitted to IEEE Transactions on Nuclear Science (TNS).1009

[9] ATLAS„ “HLT Steering twiki.”1010

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/HltSteering.1011

[10] LS2 and LS3: The largest Challenges we Know Today. 2014. https://indico.cern.ch/1012

event/315626/session/2/contribution/54/material/slides/1.pdf.1013

May 12, 2015 – 15:40 30

http://stacks.iop.org/1742-6596/513/i=5/a=052028
http://dx.doi.org/10.1109/NSSMIC.2012.6551463
http://dx.doi.org/10.1109/NSSMIC.2012.6551463
http://dx.doi.org/10.1109/NSSMIC.2012.6551463
http://dx.doi.org/10.1145/2133806.2133822
http://dx.doi.org/10.1145/2133806.2133822
http://dx.doi.org/10.1145/2133806.2133822
http://doi.acm.org/10.1145/2133806.2133822
https://inspirehep.net/record/928960/files/lhcb-98-064.pdf
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://arxiv.org/abs/cs.SE/0306089
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/HltSteering
https://indico.cern.ch/event/315626/session/2/contribution/54/material/slides/1.pdf
https://indico.cern.ch/event/315626/session/2/contribution/54/material/slides/1.pdf
https://indico.cern.ch/event/315626/session/2/contribution/54/material/slides/1.pdf

	Introduction
	Methodology and Source Material
	Concurrency and Hardware Evolution

	Current Framework
	Offline Processing
	The Gaudi Architecture
	Component Model
	State Machine
	Main Components
	Job Configuration
	Data Access
	Data Model Foundation Classes
	Scheduling

	High Level Trigger Processing
	Key concepts in HLT events processing
	Trigger Configuration
	HLT Steering
	HLT Algorithms
	Trigger Navigation
	Optimization of Event Processing
	Integration with Monte Carlo production
	Additional Trigger requirements

	Requirements for Event Processing
	Required Framework Elements
	Whiteboard
	Scheduler
	Algorithms
	Sequences
	Tools
	Services
	Auditors
	Converters
	Schedulable Incidents

	Overall Framework Features
	Framework Rationalisation
	Additional Details
	Input/Output Layer
	Time Varying Data
	Accelerator Devices
	Configuration

	EventService
	Code Evolution

	Timescales
	Conclusions
	Recommendations
	Observations

