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Issues I I 1
Problems and issues specific to the unfolding method in the Higgs measurements:

 Signal Extraction
» Large background to the analysis (e.g. in H=>vyvy, the yy continuum)
 Mass is being profiled
e A parametric fit is necessary

 Categorization
* enhancement of the signal in different categories
e simultaneous fit across categories
e correct dealing with statistical uncertainties from the combination in the unfolding

« Why unfolding
e undo detector effects
e quoting fiducial and differential cross sections
e correctly model statistical migrations
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Literature I | | i |-

In literature there are different methods to perform unfolding.
The most Wldespread are based on a x> minimization
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Regularization:

e artificially changes the “Confidence Intervals”
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Proposed method I I I

* H->vyvy and H->ZZ differential and fiducial cross-section measurement (coming out soon)
* similar to the coupling strength extraction

Signal extraction and category combination is performed simultaneously

e Each generator bin has its corresponding 4 A
detector shape (parametric) Cat0 Cat1
: : : -,+ + Data + Data
e A simultaneous fit across all categories ++ - - Bkg - - Bkg
and all bins is performed +m* ] BinO (diagonal) ++*+++ ] BinO (off-diagonal)
] 1N ] Bin1 (oﬁ—diagonal) s ] Bin1 (diagonal)
* Relative strength are extracted *+++*+ 11 Ho/by \++ 18 Ho/Hy
* The cross-section is normalized back 2 iﬂ*
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Likelihood function fit simultaneously in catO/cat1 to get the
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Importance of Unfolding I I I i |-

* Bin-by-Bin is a biased estimation (smaller uncertainties).

 Out-of-acceptance:
* A out-of-acceptance shape should be subtracted from
the fiducial results

 Bin Migration can be important:
e change the best fit values
e change the confidence intervals!

pt differences in the statistical uncertainties are small (up to few percent)
Niets differences in the statistical uncertainties can be big (up to 30%)

* jet resolution induces important migrations

e data can pull the best-fit values in the different bins
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Conclusions I I 1

* We show how to unfold distributions in the Higgs framework
e Unfolding is important to set-up theory comparisons
e ... and to give legacy in the presented results.
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Adding regularization I | I T
* Adding Tickhonov regularization to the likelihood

F = —2log Z(A[i]y) + 8[| LA

A certain number of choices (L, delta) ...
* it’s not trivial to keep under control these parameters with the current statistics.

The goal of the regularization is to give a not distorted spectrum
e use the additional fact that distributions are continuous
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Why not literature methods? I I I i |-

e Categories (SVD):
* SVD can be extended with categories

Yreg =0 B— (ATz—IA) T ATy
Areg — \/gL )_C’T — B)_;
AVreg = 1 ¥ = BEB'

but signal extraction must be performed before.
* Bayes:
e cannot use the “built-in” categories due to the very non-poissonian errors
of the mgg continuum:
e Each category should be unfolded separately and results re-combined later

Signal Extraction:
 These methods wants that signal extraction is performed before
e Systematics and nuisances (eg, mu) will be just approximations
e Covariance matrix approximation for low yields
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Unfolding 1

* Undo detector effects
* based on linearity assumption
e Description of smearing through a matrix
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Unfolding 1 I | I i |-

 Undo detector effects
* based on linearity assumption
* Description of smearing through a matrix Bl Smeared
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Regularization & Unfolding I | I i |-

* What is regularization doing ?
* Penalize high fluctuating solutions -
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