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Problems and issues specific to the unfolding method in the Higgs measurements:

!
• Signal Extraction 
• Large background to the analysis (e.g. in H➙γγ, the γγ continuum)

• Mass is being profiled 

• A parametric fit is necessary


!
• Categorization 

• enhancement of the signal in different categories

• simultaneous fit across categories

• correct dealing with statistical uncertainties from the combination in the unfolding


!
• Why unfolding 
• undo detector effects

• quoting fiducial and differential cross sections

• correctly model statistical migrations

Issues

2



Andrea Carlo Marini 24 Jun 2015

In literature there are different methods to perform unfolding. 

The most widespread are based on a 𝛘2 minimization

•  

!
 
Regularization: 
• artificially changes the “Confidence Intervals”

• Tikhonov (SVD):

• Penalization term in the minimization procedure 


• Iterative d’Agostini (Bayes):

!

!
!

• d’Agostini regularization is given in terms of n. of iterations 

!

Literature
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CHAPTER 6. Z+JETS OVER g+JETS CROSS SECTION RATIO

vector of the lepton itself. The particle level jets in MC are obtained by clustering the generated
stable particles (after hadronization and including neutrinos) using the anti-kT algorithm with a
distance parameter of R = 0.5 as at the detector level. The same selection criteria from data are
then used at the particle level: leading leptons are required to have pT > 20GeV and |h| < 2.4,
while jets are required to have pT > 30GeV within the region of |h| < 2.4. All jets are required
to be separated from each lepton by DR(`, j) > 0.5.

The unfolding response matrix accounts for detector resolution effects and efficiencies. We
use MADGRAPH to build a response matrix which allows to map detector level to particle-level
distributions. To quantify the bias introduced by the choice of the MC model, we use SHERPA as
an alternative. For both channels, the response matrices are very closely centered around the
diagonal. For the dielectron channel, 85–95% of all events in a given bin of the reconstructed
pT

ee distribution are mapped onto the same bin on MC truth level. For the dimuon channel,
at low pT

µµ around 85% fall in this category, whereas at very high pT
µµ (above 300GeV),

only 67% stay in the same bin on MC truth level. The importance of the diagonal element is
due to the bin choice. This choice is indeed related to the detector-resolution, but it also takes
into account the statistics of the Z+jets and g+jets samples, and the size of the control region
used for background subtraction. The iterative “d’Agostini” method [81], as implemented in the
RooUnfold package [79], is used to regularize the inversion of the matrix. This method allows
to invert the unfolding equation already reported in Eq. 5.3 using the Bayes theorem:

p(xi
T |x j

M) =
p(x j

M|xi
T )p0(xi

T )

Âl2truth p(x j
M|xl

T )p0(xl
T )

(6.1)

where p0 are the priors for a particular distribution, usually taken from MC, and xT , xM are the
truth and measured distributions. It can be shown that by repeatedly applying the Bayes theorem
the resulting distribution converges to the solution of the unfolding problem. The regularization
with this method is obtained by stopping the iterations before the maximum likelihood (ML)
solution is reached and the variance of the distribution explodes.

Finally, the unfolded distributions from Z ! e+e� and Z ! µ+µ� are combined using the
BLUE technique [82] to get the final distributions, as described in Chapter 5.

6.3.5 Systematic uncertainties

For the Z+jets analysis the following uncertainties were considered: the jet energy scale (JES)
uncertainty, the jet energy resolution (JER) uncertainty, background subtraction, muon and
electron momentum scale and resolution as well as uncertainties in the lepton efficiency and
isolation, and uncertainties due to the MC model from the unfolding procedure, and finally the
pileup and luminosity uncertainty. The systematics due to scale uncertainties affect the data,
so the momenta of the objects were varied within their uncertainties and the unfolding on the
now-shifted distribution was re-run. The difference on the final results is taken as systematic
uncertainty. Systematics due to purity and background subtraction have to be applied prior
to unfolding to evaluate the uncertainty. The other uncertainties affect the response matrix in
the MC and the unfolding is performed with these modified matrices to determine the relative
uncertainty.
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CHAPTER 7. HŸgg DIFFERENTIAL CROSS SECTION MEASUREMENTS

minimization term:

krk2 =

�����
Â~xT �~y

D~y

�����

2

+dkL~xT k2 (7.4)

krk2 =
D

Â~xT �~y,S�1(Â~xT �~y)
E

where S is the covariance matrix of the measured histograms ~x i
M, and h·,S�1·i is the induced

scalar product. L is the linear operator related to the generalized Tikhonov regularization, and d
is the strength of the regularization. Notice that without loss of generality it is possible to write
the regularization as an extra category, where:

~yreg = 0 (7.5)

Âreg =
p

dL (7.6)
D~yreg = 1 (7.7)

These equations would lead to the simple inversion solution:

B =
⇣

ÂTS�1Â
⌘+

ÂTS�1 (7.8)

~xT = B~y (7.9)

S0 = BSBT (7.10)

where the + operator represents the pseudo-inverse of the matrix [112, 113], a generalization of
the inverse operator for non-invertible or non-squared matrices.

For the Bayesian (or eventually also SVD-Tikhonov) approach one possibility is to do what
is done in Chapters 5 and 6 for the combination of the e and µ channels:

• Solve each Category with bayesian (or SVD) unfolding

• Propagate errors on each bin

• take the diagonal elements and use them for a weighted combination.

A different approach similar to the one used for this analysis is to recast the c2 problem in terms
of a likelihood one. Equation 7.4 can be rewritten in the following way:

F = �2logL (Â~xT |~y)+dkL~xT k2 (7.11)

F = �2logL (A~µ|~y)+dkL~µk2 (7.12)

eventually with a regularization term of strength d , and the solution is given by the minimization
over~xT or~µ of the functional F . To this likelihood we will add in Equation 7.15 the subtraction
of the background component coming from the smoothly falling diphoton spectrum. The
difference between the two expressions is in whether the regularization is applied on the signal
strengths (~µ), rather than on the truth distribution directly, as discussed in Chapter 5; the relation
between A and Â is then:

Ai j = Âi jxMC
T,i (7.13)
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ÂTS�1 (7.8)

~xT = B~y (7.9)

S0 = BSBT (7.10)

where the + operator represents the pseudo-inverse of the matrix [112, 113], a generalization of
the inverse operator for non-invertible or non-squared matrices.

For the Bayesian (or eventually also SVD-Tikhonov) approach one possibility is to do what
is done in Chapters 5 and 6 for the combination of the e and µ channels:

• Solve each Category with bayesian (or SVD) unfolding

• Propagate errors on each bin

• take the diagonal elements and use them for a weighted combination.

A different approach similar to the one used for this analysis is to recast the c2 problem in terms
of a likelihood one. Equation 7.4 can be rewritten in the following way:
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F = �2logL (Â~xT |~y)+dkL~xT k2 (7.11)

F = �2logL (A~µ|~y)+dkL~µk2 (7.12)

eventually with a regularization term of strength d , and the solution is given by the minimization
over~xT or~µ of the functional F . To this likelihood we will add in Equation 7.15 the subtraction
of the background component coming from the smoothly falling diphoton spectrum. The
difference between the two expressions is in whether the regularization is applied on the signal
strengths (~µ), rather than on the truth distribution directly, as discussed in Chapter 5; the relation
between A and Â is then:
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Âreg =
p

dL (7.6)
D~yreg = 1 (7.7)

These equations would lead to the simple inversion solution:

B =
⇣
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Ai j = Âi jxMC
T,i (7.13)

87

measured 
distribution

CHAPTER 7. HŸgg DIFFERENTIAL CROSS SECTION MEASUREMENTS

minimization term:

krk2 =

�����
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Figure 7.9: Example of response matrix for the pT variable, where the boxes represent the
integral of the shapes in Fig. 7.8, evaluated for mH = 125GeV. On the right the out-of-acceptance
bin normalized to the corresponding accepted events.
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fit simultaneously in cat0/cat1 to get the  
Bin strength modifiers μ=(μ0,μ1)

Data
Bkg
Bin0 (off-diagonal)

Cat1

Bin1 (diagonal)
μ0/μ1 μ0/μ1

Figure 7.10: Sketch exemplifying how the fit is performed.
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• H➙γγ and H➙ZZ differential and fiducial cross-section measurement (coming out soon)

• similar to the coupling strength extraction 

• Signal extraction and category combination is performed simultaneously

• Each generator bin has its corresponding 

detector shape (parametric)

• A simultaneous fit across all categories  

and all bins is performed

• Relative strength are extracted

• The cross-section is normalized back 

Likelihood function 
• contains the “parametric” response matrix 

as a collection of shapes

Proposed method 
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ÂTS�1 (7.8)

~xT = B~y (7.9)

S0 = BSBT (7.10)

where the + operator represents the pseudo-inverse of the matrix [112, 113], a generalization of
the inverse operator for non-invertible or non-squared matrices.

For the Bayesian (or eventually also SVD-Tikhonov) approach one possibility is to do what
is done in Chapters 5 and 6 for the combination of the e and µ channels:

• Solve each Category with bayesian (or SVD) unfolding

• Propagate errors on each bin

• take the diagonal elements and use them for a weighted combination.

A different approach similar to the one used for this analysis is to recast the c2 problem in terms
of a likelihood one. Equation 7.4 can be rewritten in the following way:
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Each entry of the matrix ai j is a set of signal model shapes in the mgg variable, with the
interpolation between the tested Higgs mass-points (see Fig. 7.8). The matrix (a) is a function of
mH, the generated bin model (i), and the categories and reconstructed bin (cat j), as well as all
the nuisance parameters (q ) that we will discuss later. When all these numbers are fixed, the
mgg -peak can be extracted from the matrix, and be used in the fit procedure for the extraction of
the strength modifiers (~µ).

Fit

The signal extraction is performed fitting the mgg distribution simultaneously in all categories.
For all the shapes the same mH is assumed, and its value is treated as a nuisance parameter.
The out-of-acceptance bin (~b1..n) is fixed in the fit, since it can not be constrained with data. It
contributes less than 1% of the events in the selected sample. For distributions including more
jets, an extra bin, both at generator and detector level in the sM

M categories, is introduced to
take into account the events that fail jet requirements. Migration between this bin and the jet
observables are taken into account. The reason why this extra bin was added, is to add extra
information to constrain the nuisance parameters, in particular on mH, during the likelihood
maximization, and to reduce the model dependence on the Njets spectrum, since it is inferred
from data.

The sketch in Fig. 7.10 shows the fit procedure: for simplicity let’s consider two bins at
generator level (Bin0 and Bin1) and the equivalent two bins at reconstruction level (Cat0 and
Cat1). The diagonal elements correspond to the Bin0-Cat0, and to the Bin1-Cat1 elements,
while the off-diagonal elements correspond to the migration Bin0-Cat1 and Bin1-Cat0. The
signal strength (µ0,µ1) modifies the yields of the corresponding generator ( Bin0, Bin1) shapes
in both categories. These shapes include nuisances parameters (mH, systematics, . . . ), and are
fitted simultaneously in both categories, using the signal plus background likelihood function:

L = Lcat0 ·Lcat1 · . . . (7.15)
= L (a00µ0 +a01µ1 + · · ·+ f0|data) ·L (a10µ0 +a11µ1 + · · ·+ f1|data) · . . .

where f represents the background model of the mgg -spectrum.

Restoring the Cross-Section Normalization

In order to restore the correct normalization of the cross-section in the fiducial region, the
generator distribution for the variable of interest (~xMC

T ) at the fitted mass point mH, whose
smearings (A) are used in the fit, are multiplied by the measured strength (~µ) as in Equation 7.16.
The procedure is similar to the one described in the SVD unfolding paper in Ref. [78]:

Dŝi =
xMC

T,i µ̂i

L
(7.16)
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normalization 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DIFFERENTIAL STUDIES OF VECTOR BOSON PLUS JET AND HIGGS PRODUCTION

7.4.2 Unfolding Technique

In this analysis it has been decided to perform the measurement simultaneously in all bins
together with the unfolding to particle-level. This approach has the advantage of correctly
estimating the uncertainty in the different bins and to treat asymmetric uncertainties using the
full likelihood instead of the covariance matrix (gaussian approximation).

In view of unfolding the reconstructed level distribution, it is not enough to build the signal
models in three sM/M categories for each bin of the observables to be measured. A response
matrix A (built from simulations) for each observable has to be constructed to give the probability
of measuring a reconstructed event in a bin and category j given that it was generated in a bin i,
Equation 7.13, giving the number of expected events in each bin. Possible events falling out
of the acceptance are taken into account as extra bins. The signal models are built for each
category of the response matrix, which is approximately diagonal with possibly non-negligible
bin migrations resulting in non-diagonal contributions. The statistical uncertainties introduced
by the unfolding are small for the photon-related observables, while they are sizeable for the jet
observables, due to the non-zero off-diagonal elements.

The unfolding is performed with a maximum likelihood (ML) technique, which is adapted
to combine the measurement in categories. In particular the minimization of Equation 7.12 is
performed, without any regularization (d = 0), given the small amount of bins in the distributions
and with the extra benefit of obtaining the unbiased uncertainties on the results.

Response Matrix/Signal Model Construction

In the following we will use interchangeably the names “Response matrix” and “Signal model”.
The “unfolding model” is composed of a smearing matrix (A), which accounts for bin-to-bin
migrations, a background subtraction term (~b1..n), that accounts for the presence of Higgs events
in the reconstructed data that do not belong to the fiducial phase space of the signal, and an
efficiency term that corrects for reconstruction efficiency and acceptance, used to restore the
cross section normalization, as described in the following sections.

The response matrix is built parametrically in the hypothesis mass and the nuisances pa-
rameters related to the systematic uncertainties. In practice, for each signal mass point (e.g.,
mH = 125GeV) we have a collection of signal shapes (a) that will be used to perform the fit in
each category. The total rate given by Equation 7.14 is what typically is referred to as “response
matrix” and shown in Fig. 7.9:

A(mH,q) =
Z

dmgg a(mgg |mH,q) (7.14)

The expected reconstructed shapes at detector level ai j = âi j · xMC
T,i are derived, where the index i

runs on the generators bin and the index j runs on the reconstructed bins and the sM
M categories

(generally referred to as categories). In order to deal with the acceptance of the fiducial regions,
an extra-bin is added to the generator model i = Nbins, which collects the events failing the
acceptance requirement, and hereby referred to as “out-of-acceptance” bin.
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• Bin-by-Bin is a biased estimation (smaller uncertainties).

!

• Out-of-acceptance: 
• A out-of-acceptance shape should be subtracted from  

the fiducial results 
 

• Bin Migration can be important:

• change the best fit values

• change the confidence intervals!


!
 

•  pT differences in the statistical uncertainties are small (up to few percent) 

• Njets differences in the statistical uncertainties can be big (up to 30%) 

• jet resolution induces important migrations


• data can pull the best-fit values in the different bins

Importance of Unfolding
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• We show how to unfold distributions in the Higgs framework

• Unfolding is important to set-up theory comparisons

• … and to give legacy in the presented results.

Conclusions
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• Adding Tickhonov regularization to the likelihood

!
!
!
A certain number of choices (L, delta) … 

• it’s not trivial to keep under control these parameters with the current statistics.


!
The goal of the regularization is to give a not distorted spectrum

• use the additional fact that distributions are continuous 

Adding regularization
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CHAPTER 7. HŸgg DIFFERENTIAL CROSS SECTION MEASUREMENTS

minimization term:

krk2 =

�����
Â~xT �~y

D~y

�����

2

+dkL~xT k2 (7.4)

krk2 =
D

Â~xT �~y,S�1(Â~xT �~y)
E

where S is the covariance matrix of the measured histograms ~x i
M, and h·,S�1·i is the induced

scalar product. L is the linear operator related to the generalized Tikhonov regularization, and d
is the strength of the regularization. Notice that without loss of generality it is possible to write
the regularization as an extra category, where:

~yreg = 0 (7.5)

Âreg =
p

dL (7.6)
D~yreg = 1 (7.7)

These equations would lead to the simple inversion solution:

B =
⇣

ÂTS�1Â
⌘+

ÂTS�1 (7.8)

~xT = B~y (7.9)

S0 = BSBT (7.10)

where the + operator represents the pseudo-inverse of the matrix [112, 113], a generalization of
the inverse operator for non-invertible or non-squared matrices.

For the Bayesian (or eventually also SVD-Tikhonov) approach one possibility is to do what
is done in Chapters 5 and 6 for the combination of the e and µ channels:

• Solve each Category with bayesian (or SVD) unfolding

• Propagate errors on each bin

• take the diagonal elements and use them for a weighted combination.

A different approach similar to the one used for this analysis is to recast the c2 problem in terms
of a likelihood one. Equation 7.4 can be rewritten in the following way:

F = �2logL (Â~xT |~y)+dkL~xT k2 (7.11)

F = �2logL (A~µ|~y)+dkL~µk2 (7.12)

eventually with a regularization term of strength d , and the solution is given by the minimization
over~xT or~µ of the functional F . To this likelihood we will add in Equation 7.15 the subtraction
of the background component coming from the smoothly falling diphoton spectrum. The
difference between the two expressions is in whether the regularization is applied on the signal
strengths (~µ), rather than on the truth distribution directly, as discussed in Chapter 5; the relation
between A and Â is then:

Ai j = Âi jxMC
T,i (7.13)

87Particle Level  DATA/Theory
•Background subtraction 
•(Madgraph/data-driven when possible)
•Phase space Bkg subtraction
•Undo detector effects (efficiencies/smearing)
•Singular Value Decomposition method
•Alternative models also studied (Bayesian, 
Inversion, Bin-Bin corr.)

Unfolding from data→true
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Unfolding from data→true
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• Categories (SVD):

• SVD can be extended with categories  
 
 
 
 
 
but signal extraction must be performed before. 


• Bayes:

• cannot use the “built-in” categories due to the very non-poissonian errors  

of the mgg continuum:

• Each category should be unfolded separately and results re-combined later


!
Signal Extraction: 
• These methods wants that signal extraction is performed before

• Systematics and nuisances (eg, mH) will be just approximations

• Covariance matrix approximation for low yields

Why not literature methods?
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E

where S is the covariance matrix of the measured histograms ~x i
M, and h·,S�1·i is the induced

scalar product. L is the linear operator related to the generalized Tikhonov regularization, and d
is the strength of the regularization. Notice that without loss of generality it is possible to write
the regularization as an extra category, where:

~yreg = 0 (7.5)
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is done in Chapters 5 and 6 for the combination of the e and µ channels:
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over~xT or~µ of the functional F . To this likelihood we will add in Equation 7.15 the subtraction
of the background component coming from the smoothly falling diphoton spectrum. The
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F = �2logL (Â~xT |~y)+dkL~xT k2 (7.11)

F = �2logL (A~µ|~y)+dkL~µk2 (7.12)

eventually with a regularization term of strength d , and the solution is given by the minimization
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of the background component coming from the smoothly falling diphoton spectrum. The
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• Undo detector effects

• based on linearity assumption

• Description of smearing through a matrix

Unfolding 1
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
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Even if effectively going through a minimization, in the following we will refer to this pro-
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unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
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k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
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where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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reduction in the e–µ differences has been observed. The corrections are around 2–3% in most
of the cases, for the post-FSR ! dressed or post-FSR ! pre-FSR transitions, showing that
the observables we are interested in don’t have strong dependencies on FSR effects. The only
exception to this statement is the inclusive Z ! e+e� event shape lntT where there is a hint of a
5% difference, which we cover assigning a systematic uncerainty. The overall correction from
dressed to pre-FSR is smaller than 1%, also for lntT, giving confidence that part of the effect of
the FSR is effectively recovered with the dressing procedure. Data are unfolded directly to the
dressed level, in order to avoid bin-by-bin corrections for the pre/post-FSR. The dressed level is
defined on top of the particle level, making it suitable to be computed with any MC generator
(without looking at the ill-defined history of generated particles).

The particle level jets in MC events are reconstructed by clustering the generated stable
particles (after hadronization) using the same anti-kT algorithm used for the data with the same
parameter R = 0.5. The selection criteria used for data are also applied to particle level leptons
and jets: the two leading leptons are required to have pT > 20GeV and |h| < 2.4, while the jets
must have pT > 50GeV and |h| < 2.5. An angular separation of DR(`, j) > 0.4 is also required
between the two leading leptons and any accepted jet.

5.3.3 Unfolding Procedure

The unfolding procedure maps the background-subtracted detector level distributions to the
particle level ones. Detector resolution can create effects of bin migration. For example, an event
containing a Z boson produced in association with Njets at the particle level, can migrate to the
Njets+1 jets final state because of the jet pT resolution. For the same mechanism, events can
migrate out of the geometric and kinematic acceptance: such migrations can change the cross
section in a specific bin by as much as 30%.

The basic idea of the unfolding procedure is that the detector effects are modeled through
a response matrix, which is determined from MC simulation (separately for each lepton flavor
and each observable), by associating the particle level values to their reconstructed quantities.
Once the response matrix is computed, the unfolding of data to the particle level is performed
using the singular value decomposition (SVD) method [78] (see next section), implemented in
the RooUnfold package [79].

The unfolding problem can be formulated as follows [78, 80, 81]:

xi
M = R̂i jx j

T +bi (5.3)

where~xM and~xT are vectors of the measured and truth distribution respectively and the vector~b
represents the background events. The matrix R̂ contains the efficiency information, it models
the experimental resolution on the considered observable, and it is responsible for modelling the
migration of events across the bins. The system of linear equations states also that the observed
number of events is proportional to the expected number of events in all bins.
Conceptually the solution of this equation can easily be obtained inverting the matrix R̂ in
Equation 5.3:

~xT = R̂�1(~xM �~b) (5.4)
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• Undo detector effects

• based on linearity assumption

• Description of smearing through a matrix
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
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min
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k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
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k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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reduction in the e–µ differences has been observed. The corrections are around 2–3% in most
of the cases, for the post-FSR ! dressed or post-FSR ! pre-FSR transitions, showing that
the observables we are interested in don’t have strong dependencies on FSR effects. The only
exception to this statement is the inclusive Z ! e+e� event shape lntT where there is a hint of a
5% difference, which we cover assigning a systematic uncerainty. The overall correction from
dressed to pre-FSR is smaller than 1%, also for lntT, giving confidence that part of the effect of
the FSR is effectively recovered with the dressing procedure. Data are unfolded directly to the
dressed level, in order to avoid bin-by-bin corrections for the pre/post-FSR. The dressed level is
defined on top of the particle level, making it suitable to be computed with any MC generator
(without looking at the ill-defined history of generated particles).

The particle level jets in MC events are reconstructed by clustering the generated stable
particles (after hadronization) using the same anti-kT algorithm used for the data with the same
parameter R = 0.5. The selection criteria used for data are also applied to particle level leptons
and jets: the two leading leptons are required to have pT > 20GeV and |h| < 2.4, while the jets
must have pT > 50GeV and |h| < 2.5. An angular separation of DR(`, j) > 0.4 is also required
between the two leading leptons and any accepted jet.

5.3.3 Unfolding Procedure

The unfolding procedure maps the background-subtracted detector level distributions to the
particle level ones. Detector resolution can create effects of bin migration. For example, an event
containing a Z boson produced in association with Njets at the particle level, can migrate to the
Njets+1 jets final state because of the jet pT resolution. For the same mechanism, events can
migrate out of the geometric and kinematic acceptance: such migrations can change the cross
section in a specific bin by as much as 30%.

The basic idea of the unfolding procedure is that the detector effects are modeled through
a response matrix, which is determined from MC simulation (separately for each lepton flavor
and each observable), by associating the particle level values to their reconstructed quantities.
Once the response matrix is computed, the unfolding of data to the particle level is performed
using the singular value decomposition (SVD) method [78] (see next section), implemented in
the RooUnfold package [79].

The unfolding problem can be formulated as follows [78, 80, 81]:

xi
M = R̂i jx j

T +bi (5.3)

where~xM and~xT are vectors of the measured and truth distribution respectively and the vector~b
represents the background events. The matrix R̂ contains the efficiency information, it models
the experimental resolution on the considered observable, and it is responsible for modelling the
migration of events across the bins. The system of linear equations states also that the observed
number of events is proportional to the expected number of events in all bins.
Conceptually the solution of this equation can easily be obtained inverting the matrix R̂ in
Equation 5.3:

~xT = R̂�1(~xM �~b) (5.4)
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• Penalize high fluctuating solutions

• bias in the “minimum search”
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• Reduce variance of the final distribution
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In general though, R̂ is not-invertible or even not-squared. An alternative approach to the solution
consists in formulating the problem as a minimization:

min
xT

k~xM �~b� R̂ ·~xT k2 (5.5)

Even if effectively going through a minimization, in the following we will refer to this pro-
cedure as inversion. Because of the presence of off-diagonal elements in R̂, fluctuations in
the distributions of the random variable ~xM can be amplified by the inversion, resulting in an
unphysical increase of its variance. From a physical point of view, it means that we are trying to
measure a distribution with a finer resolution than the one allowed by our detector, thus resolving
random-fluctuations in the measured distribution as fine structures that we are not sensitive to.

A solution to this problem is obtained introducing a “regularization” procedure. The regular-
ization reduces the unphysical fluctuations under the assumption that the measured distribution is
smooth. This procedure introduces a bias in the unfolded distribution. The “art” of the unfolding
consists in finding the correct balance between a small variance of the unfolded distribution and
a small bias.

Tikhonov Regularization and Singular Value Decomposition

A common regularization prescription has been given by Tikhonov and it introduces a penalty
term in the minimization of Equation 5.5:

min
xT

k~xM �~b� R̂ ·~xT k2 +dkL ·~xT k2 (5.6)

where d is the regularization strength, and L is a linear operator that usually measures the
curvature of the distribution. The regularization term in Equation 5.6, will distort peaky shapes
by penalizing high curvature terms in the distribution. An alternative is to apply the regularization
operator on the signal-strength µ i = xi

T /xi
MC, i.e., rescaling the equation 5.6 as

min
µ

k~xM �~b�R ·~µk2 +dkL ·~µk2 (5.7)

where~xMC is a MC prediction for the truth distribution~xT , and R now contains the real amount
of events expected from the simulation in the i j bin (Ri j = R̂i j · xMC

T,i). It has been shown in
Ref. [78] that the solution to the Tikhonov problem (Equation 5.7) can be approached with the
singular value decomposition (SVD), leading to an increase in performance of the minimization
algorithm. The SVD method allows to factorize, in our case, a real operator into a product of
three matrices: R = USVT, where S is a rectangular diagonal matrix, and U, V are orthogonal
matrixes (UUT = 1, UTU = 1, VVT = 1, VTV = 1). In particular, if the regularization operator
L is invertible, a condition that can be practically achieved with the addition of small diagonal
elements L ! L+ eI, the singular value decomposition can be run only once on R ·L�1 for any
choice of the regularization parameter d . The truth distribution is then:

~µ = Â
i

si

s2
i +d

h
~uT

i (~xM �~b)
i
~vi (5.8)

where~ui,~vi and si are respectively the left, right singular vectors and the singular values obtained
from the decomposition of R ·L�1.
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reduction in the e–µ differences has been observed. The corrections are around 2–3% in most
of the cases, for the post-FSR ! dressed or post-FSR ! pre-FSR transitions, showing that
the observables we are interested in don’t have strong dependencies on FSR effects. The only
exception to this statement is the inclusive Z ! e+e� event shape lntT where there is a hint of a
5% difference, which we cover assigning a systematic uncerainty. The overall correction from
dressed to pre-FSR is smaller than 1%, also for lntT, giving confidence that part of the effect of
the FSR is effectively recovered with the dressing procedure. Data are unfolded directly to the
dressed level, in order to avoid bin-by-bin corrections for the pre/post-FSR. The dressed level is
defined on top of the particle level, making it suitable to be computed with any MC generator
(without looking at the ill-defined history of generated particles).

The particle level jets in MC events are reconstructed by clustering the generated stable
particles (after hadronization) using the same anti-kT algorithm used for the data with the same
parameter R = 0.5. The selection criteria used for data are also applied to particle level leptons
and jets: the two leading leptons are required to have pT > 20GeV and |h| < 2.4, while the jets
must have pT > 50GeV and |h| < 2.5. An angular separation of DR(`, j) > 0.4 is also required
between the two leading leptons and any accepted jet.

5.3.3 Unfolding Procedure

The unfolding procedure maps the background-subtracted detector level distributions to the
particle level ones. Detector resolution can create effects of bin migration. For example, an event
containing a Z boson produced in association with Njets at the particle level, can migrate to the
Njets+1 jets final state because of the jet pT resolution. For the same mechanism, events can
migrate out of the geometric and kinematic acceptance: such migrations can change the cross
section in a specific bin by as much as 30%.

The basic idea of the unfolding procedure is that the detector effects are modeled through
a response matrix, which is determined from MC simulation (separately for each lepton flavor
and each observable), by associating the particle level values to their reconstructed quantities.
Once the response matrix is computed, the unfolding of data to the particle level is performed
using the singular value decomposition (SVD) method [78] (see next section), implemented in
the RooUnfold package [79].

The unfolding problem can be formulated as follows [78, 80, 81]:

xi
M = R̂i jx j

T +bi (5.3)

where~xM and~xT are vectors of the measured and truth distribution respectively and the vector~b
represents the background events. The matrix R̂ contains the efficiency information, it models
the experimental resolution on the considered observable, and it is responsible for modelling the
migration of events across the bins. The system of linear equations states also that the observed
number of events is proportional to the expected number of events in all bins.
Conceptually the solution of this equation can easily be obtained inverting the matrix R̂ in
Equation 5.3:

~xT = R̂�1(~xM �~b) (5.4)
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