
Build system for the LCG software
Benedikt Hegner, Pere Mato
HSF Packaging WG Meeting, 9th June 2015

LCG Configurations
✤ Configuring, building and deploying external libraries (~140) and MC

Generators (~50) for all the supported platforms (~10) used by LHC
experiments

✤ Releasing full configurations. Content, versions and platforms discussed/agreed with
experiments (LIM+AF)

✤ We have been providing this service to the experiments successfully for the last N>10
years

✤ Originally implemented with script-lets driven by CMT, now an implementation
based on CMake

✤ With some special constrains, e.g. :
✤ python packages installation into a reduced set of “wrapper packages”
✤ several versions of same package (in particular for MC generators)
✤ special naming conventions (package, platforms, …)
✤ relocatability (e.g. easy moving installations from AFS to CVMFS)
✤ …

2

CMake ExternalProject Module
✤ CMake comes with a standard module

ExternalProject that creates custom targets to
drive download, update/patch, configure,
build, install and test steps of an external
package
✤ Fairly easy to add additional custom steps such as

the creation of source and binary tarfiles,
installation of logfiles, etc.

✤ Implemented a wrapper of ExternalProject_Add()
to to inject all these extra features

✤ CMake generates a Makefile (Ninja file) that
at the end drives all the build process
✤ make -jN works like a dream!

3

Example
✤ Few lines are sufficient to describe the steps required for a

given package
✤ Dependencies to other packages are explicit
✤ Variables such as ${XXX_home} point to the installation of package XXX

4

#—FastJet---

LCGPackage_Add(
 fastjet
 URL http://.../tarFiles/fastjet-${fastjet_native_version}.tar.gz
 CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix=<INSTALL_DIR>
 --enable-shared
 --enable-allplugins
)

#---agile--

LCGPackage_Add(
 agile
 URL http://www.hepforge.org/archive/agile/AGILe-${agile_native_version}.tar.bz2
 CONFIGURE_COMMAND ./configure --prefix=<INSTALL_DIR>
 --with-hepmc=${HepMC_home}
 --with-boost-incpath=${Boost_home_include}
 --with-lcgtag=${LCG_platform}
 PYTHON=${Python_home}/bin/python
 LD_LIBRARY_PATH=${Python_home}/lib:$ENV{LD_LIBRARY_PATH}
 SWIG=${swig_home}/bin/swig
 BUILD_COMMAND make all LD_LIBRARY_PATH=${Python_home}/lib:$ENV{LD_LIBRARY_PATH}
 INSTALL_COMMAND make install
 LD_LIBRARY_PATH=${Python_home}/lib:$ENV{LD_LIBRARY_PATH}
 BUILD_IN_SOURCE 1
 DEPENDS HepMC Boost Python swig
)

http://livepage.apple.com/

Package Dependencies
✤ From the dependencies we can generate dependency

graphs
✤ Useful for documentation
✤ Full package dependency versions for binary compatibility (hash

number generation)

5

Defining the Configuration
✤ A single file lists all the packages and their required

versions

6

Application Area Projects
LCG_AA_project(COOL COOL_2_8_17)
LCG_AA_project(CORAL CORAL_2_3_26)
LCG_AA_project(RELAX RELAX_1_3_0k)
LCG_AA_project(ROOT 5.34.05)
LCG_AA_project(LCGCMT LCGCMT_${heptools_version})

Externals
LCG_external_package(4suite 1.0.2p1)
LCG_external_package(AIDA 3.2.1)
LCG_external_package(blas 20110419)
LCG_external_package(Boost 1.50.0)

...

Generators
LCG_external_package(starlight r43 MCGenerators/starlight)
LCG_external_package(herwig 6.520 MCGenerators/herwig)
LCG_external_package(herwig 6.520.2 MCGenerators/herwig)
LCG_external_package(crmc v3400 MCGenerators/crmc)
LCG_external_package(cython 0.19 MCGenerators/cython)
LCG_external_package(yaml_cpp 0.3.0 MCGenerators/yaml_cpp)
LCG_external_package(yoda 1.0.0 MCGenerators/yoda)

Build instructions are fairly simple

7

- get or setup cmake
- checkout lcgcmake package from SVN
- setup C/C++/Fortran compilers
- create workspace area
- configure with cmake
- build with make

http://ph-dep-sft.web.cern.ch/document/using-lcgcmake

http://ph-dep-sft.web.cern.ch/document/using-lcgcmake

Conditional Declarations
✤ Often we need to change

the build instructions
depending on the
platform, version, etc.
✤ Introduced ‘embedded

conditional declarations’
✤ The example of ROOT is

probably the most
complicated one

8

LCGPackage_Add(
 ROOT
 IF <VERSION> MATCHES "^v.*-patches|HEAD" THEN
 GIT_REPOSITORY http://root.cern.ch/git/root.git GIT_TAG <VERSION>
 UPDATE_COMMAND <VOID>
 ELSE
 URL ftp://root.cern.ch/root/root_v${ROOT_author_version}.source.tar.gz
 ENDIF
 CMAKE_CACHE_ARGS -DCMAKE_PREFIX_PATH:STRING=${Python_home} ${Davix_home}
 ${fftw_home} ${mysql_home} ${xrootd_home} ${graphviz_home}
 ${GSL_home} ${Qt_home} ${CASTOR_home} ${dcap_home}
 CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
 -DCMAKE_INSTALL_PREFIX=<INSTALL_DIR>
 -Dpython=ON
 -Dbuiltin_pcre=ON
 -Dcintex=ON
 IF DEFINED Davix_native_version THEN
 -Ddavix=ON
 ENDIF
 -Dgdml=ON
 -Dgsl_shared=ON
 -Dkrb5=ON
 -Dgenvector=ON
 IF <VERSION> MATCHES "^v6-|^6[.]" THEN
 -Dvc=ON
 ENDIF
 ...
 IF LCG_CPP11 THEN
 -Dcxx11=ON
 ENDIF
 IF LCG_TARGET MATCHES x86_64-slc THEN
 -Dcastor=ON
 -Ddcache=ON
 -Dgfal=ON -DGFAL_DIR=${gfal_home}
 -DSRM_IFCE_DIR=${srm_ifce_home}
 ENDIF
 IF LCG_TARGET MATCHES slc THEN
 -Doracle=ON -DORACLE_HOME=${oracle_home}
 -Dqt=ON
 ENDIF
 DEPENDS Python fftw graphviz GSL mysql xrootd
 IF DEFINED Davix_native_version THEN
 Davix
 ENDIF
 IF LCG_TARGET MATCHES x86_64-slc THEN
 CASTOR dcap gfal srm_ifce
 ENDIF
 IF LCG_TARGET MATCHES slc THEN
 oracle Qt
 ENDIF
)

Incremental Builds
✤ Package binaries are installed in:

✤ <prefix>/<package>/<version>_<hash>/<platform_tag>/…
✤ The <platform_tag> is a combination of processor architecture, os version,

compiler version and build type (e.g. x86_64-slc6-gcc48-dbg, aarch64-
ubuntu14-gcc49-opt)

✤ The <hash> value is calculated taking into account the full list of package
dependencies and their versions

✤ When building a package, the user can tell the system to
take existing builds from a given <prefix>
✤ The match will take into account <version>_<hash>/

<platform_tag>
✤ The actual ‘target’ build will consists of creating a soft-link to the

existing installation
9

Runtime Environment
✤ During the build, files for providing the runtime

environment setting will be generated
✤ By default, /lib[64] will go to LD_LIBRARY_PATH, /bin will go to

PATH, etc.
✤ <package>-env.sh is generated for each package, which executes

similar scripts for the dependent packages
✤ This is an area that will be improved in the next few weeks with

custom variables

10

Nightly Integration
✤ The full software stack can be built regularly on several

configurations and all supported platforms/buildtypes
and tests run

✤ Easy integration with Jenkins (scheduler) and CDash
(dashboard)

11

Comparing with Worch

12

Yes, the same

Very similar, declarative and short,
specially for ‘standard’ packages

Yes, as good as make -j (ninja)

ExternalProject comes with their
batteries

Bootstrap very simple
requirements: cmake, svn/git, make

Policies encoded in CMake code
easy to change :-)

Comparing with Homebrew

13

Yes, and also Windows?

Similar or perhaps even simpler

Yes, using CMAKE_BUILD_TYPE
and CXX/C global flags

Many many concurrent releases are
supported

Yes

Yes

Conclusions
✤ Very simple setup and instructions, adding a new package

is really trivial
✤ ~ 13 <LOC>/package (including comments and blank lines)

✤ Many concurrent configurations, many platforms
supported

✤ Very easy customizable
✤ New build steps (e.g. installation of log files, RPM creation, etc.)

can be added very easily and applicable to all 150 packages
✤ All customizations and policies in ~800 lines of CMake code

✤ Results are relocatable, and be installed in several ways
appreciate to the users

14

