Build system for the L.LC.G software

Benedikt Hegner, Pere Mato
HSF Packaging WG Meeting, 9th June 2015

L.CG Configurations

+ Configuring, building and deploying external libraries (~140) and MC
Generators (~50) for all the supported platforms (~10) used by LHC
experiments

+ Releasing full configurations. Content, versions and platforms discussed /agreed with
experiments (LIM+AF)

+ We have been providing this service to the experiments successfully for the last N>10
years

+ Qriginally implemented with script-lets driven by CMT, now an implementation
based on CMake

+ With some special constrains, e.g. :
+ python packages installation into a reduced set of “wrapper packages”
+ several versions of same package (in particular for MC generators)
+ special naming conventions (package, platforms, ...)

+ relocatability (e.g. easy moving installations from AFS to CVMFS)

CMake FxternalProject Module

* CMake comes with a standard module
ExternalProject that creates custom targets to

* CMake generates a Makefile (Ninja file) that
at the end drives all the build process

drive download, update/patch, configure, P bl
build, install and test steps of an external (o
package I
+ Fairly easy to add additional custom steps such as 1 _:_
the creation of source and binary tarfiles, o | |
installation of logfiles, etc. 5 T |
* Implemented a wrapper of ExternalProject_Add() eE _—‘: f;
to to inject all these extra features HIES “;
5 2
$
£

8]
@
=
o
g
2
0

* make -]N works like a dream!

Fxample

+ Few lines are sufficient to describe the steps required for a
given package
+ Dependencies to other packages are explicit

* Variables such as ${XXX_home} point to the installation of package XXX

LCGPackage_Add (
agile
URL http://www.hepforge.org/archive/agile/AGILe-${agile native_version}.tar.bz2
CONFIGURE_COMMAND ./configure ——prefix=<INSTALL_DIR>
——with-hepmc=${HepMC_home}
——with-boost-incpath=${Boost _home_include}
——with-1lcgtag=${LCG_platform}
PYTHON=${Python_home}/bin/python
LD_LIBRARY_PATH=${Python_home}/1ib:$ENV{LD_LIBRARY_PATH}
SWIG=${swig_home}/bin/swig
BUILD_COMMAND make all LD_LIBRARY_PATH=${Python_home}/lib:$ENV{LD_LIBRARY_PATH}
INSTALL_COMMAND make install
LD_LIBRARY_PATH=${Python_home}/1lib:$ENV{LD_LIBRARY_PATH}
BUILD_IN_SOURCE 1
DEPENDS HepMC Boost Python swig

] o

http://livepage.apple.com/

Package Dependencies

* From the dependencies we can generate dependency
graphs
* Useful for documentation

+ Full package dependency versions for binary compatibility (hash
number generation)

e
A
<> eHSHIGIRSIc

(o
\

Defining the Configuration

* A single file lists all the packages and their required
Versions

Application Area Projects

LCG_AA_project(COOL COOL_2_8_17)
LCG_AA_project(CORAL CORAL_2_3_26)

LCG_AA_project (RELAX RELAX_1_3_0k)
LCG_AA_project(ROOT 5.34.05)

LCG_AA_project (LCGCMT LCGCMT_${heptools_version})

Externals

LCG_external_package(4suite 1.0.2p1)
LCG_external_package (AIDA 3.2.1)
LCG_external_package(blas 20110419)
LCG_external_package(Boost 1.50.0)
Generators

LCG_external_package(starlight r43 MCGenerators/starlight)
LCG_external_package(herwig 6.520 MCGenerators/herwig)
LCG_external_package(herwig 6.520.2 MCGenerators/herwig)
LCG_external_package(crmc v3400 MCGenerators/crmc)
LCG_external_package(cython 0.19 MCGenerators/cython)
LCG_external_package(yaml_cpp 0.3.0 MCGenerators/yaml_cpp)
LCG_external_package(yoda 1.0.0 MCGenerators/yoda)

Build instructions are fairly simple

- get or setup cmake

- checkout lcgemake package from SVIN

- Setup C / C+ + / FOrtran Compilers 1. On Ixplus set PATH to use one of latest CMake versions (default is 2.6)

- create workspace area
- configure with cmake
- build with make

export PATH=/afs/cern.ch/sw/lcg/external/CMake/2.8.9/Linux-~
1386/bin:${PATH}

. Checkout the lcgcmake package from Icgsoft SVN repository

svn co svn+ssh://svn.cern.ch/reps/lcgsoft/trunk/lcgcmake

. Create a workspace area in which to perform the builds

mkdir lcgcmake-build
cd lcgcmake-build

. You may need at this moment to define the compiler to use if different from the native

compiler
source /afs/cern.ch/sw/lcg/external/gcc/version/platform/setup.(c)sh

. Configure the build of all externals with cmake

cmake -DCMAKE_INSTALL_PREFIX=../lcgcmake-install ../lcgcmake

. In order to build against the existing external repository use the option

-DLCG_INSTALL_PREFIX=/afs/cern.ch/sw/lcg/external
to tell the system to look for packages in the LCG area.

. Build and install all external packages

make -3

. Or to build a single external package

make -3 <package> (use make helpto see the list of all available packages)

. You may need to restart de build of a2 package from beginning in case of obscure errors.

The best is to clean 2 speciﬂc package
make clean-<package>

http:/ /ph-dep-sft.web.cern.ch /document/using-lcgcmake

http://ph-dep-sft.web.cern.ch/document/using-lcgcmake

Conditional Declarations

* Often we need to change

the build instructions
depending on the

platform, version, etc.

+ Introduced ‘embedded
conditional declarations’

* The example of ROOT is

probably the most
complicated one

LCGPackage_Add

ROOT

IF <VERSION> MATCHES "“~v.*x—patches|HEAD" THEN
GIT_REPOSITORY http://root.cern.ch/git/root.git GIT_TAG <VERSION>
UPDATE_COMMAND <VOID>

ELSE

URL ftp://root.cern.ch/root/root_v${RO0OT_author_version}.source.tar.gz

ENDIF

CMAKE_CACHE_ARGS -DCMAKE_PREFIX_PATH:STRING=${Python_home} ${Davix_home}

${fftw_home} ${mysql_home} ${xrootd_home} ${graphviz_home}
${GSL_home} ${Qt_home} ${CASTOR_home} ${dcap_home}

CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}

—DCMAKE_INSTALL_PREFIX=<INSTALL_DIR>

—Dpython=0N

—Dbuiltin_pcre=0N

—Dcintex=0N

IF DEFINED Davix_native_version THEN
—Ddavix=0N

ENDIF

—Dgdm1=0N

-Dgs1_shared=0N

—-Dkrb5=0N

—-Dgenvector=0N

IF <VERSION> MATCHES "~v6-|~6[.]" THEN
—Dvc=0N

ENDIF

IF LCG_CPP11 THEN
—-Dcxx11=0N
ENDIF
IF LCG_TARGET MATCHES x86_64-slc THEN
—Dcastor=0N
—Ddcache=0N
-Dgfal=0ON -DGFAL_DIR=${gfal_home}
—DSRM_IFCE_DIR=${srm_ifce_home}
ENDIF
IF LCG_TARGET MATCHES slc THEN
—Doracle=0ON -DORACLE_HOME=${oracle_home}
-Dqt=0N
ENDIF

DEPENDS Python fftw graphviz GSL mysql xrootd

IF DEFINED Davix_native_version THEN
Davix

ENDIF

IF LCG_TARGET MATCHES x86_64-slc THEN
CASTOR dcap gfal srm_ifce

ENDIF

IF LCG_TARGET MATCHES slc THEN
oracle Qt

ENDIF

Incremental Builds

* Package binaries are installed in:

+ <prefix>/<package>/<version>_<hash>/<platform_tag>/ ...

+ The <platform_tag> is a combination of processor architecture, os version,
compiler version and build type (e.g. x86_64-slc6-gcc48-dbg, aarch64-
ubuntul4-gcc49-opt)

+ The <hash> value is calculated taking into account the full list of package
dependencies and their versions

* When building a package, the user can tell the system to
take existing builds from a given <prefix>

+ The match will take into account <version> <hash>/
<platform_tag>

+ The actual “target’ build will consists of creating a soft-link to the
existing installation

Runtime Environment

* During the build, files for providing the runtime
environment setting will be generated

+ By default, /lib[64] will go to LD_LIBRARY_PATH, /bin will go to
[E Tl etc

+ <package>-env.sh is generated for each package, which executes
similar scripts for the dependent packages

+ This is an area that will be improved in the next few weeks with
custom variables

10

Nightly Integration

* The full software stack can be built regularly on several
configurations and all supported platforms/buildtypes
and tests run

* Easy integration with Jenkins (scheduler) and CDash
(dashboard)

Dashboard Calendar

LCGSoft

Previous Current

No file changed as of Wednesday, June 03 2015 - 22:00 UTC

1 hours ago: 4 tests failed on experimental-x86_64-slc6-gcc48-opt

3 hours ago: 37 tests falled on experimental-x86_64-mac1010-clang61-opt

3 hours ago: 11 warnings introduced on experimental-x86_64-mac1010-clang61-opt
3 hours ago: 39 errors introduced on experimental-x86_64-mac1010-clang61-opt

3 hours ago: 4 tests failed on experimental-x86_64-sic6-gcc49-dbg

lcgapp-sic6-physicall.cem.ch
lcgapp-sic6-physicall.cern.ch
ec-ubuntu-14-04-x86-64-1
macitois11.cern.ch
macitois13.cern.ch
lcgapp-sic6-physicall.cem.ch

) experimental-x86_64-sic6-gccds-opt -«

) experimental-x86_64-sic6-gcc49-dbg -~

) experimental-x86_64-ubuntul4-gcc4s-opt
experimental-x86_64-mac109-clang60-opt
experimental-x86_64-mac1010-clang61-opt
) experimental-x86_64-sic6-gec51-opt

Update Configure
Files Error Warn
10 0 0
8 0 0
8 0 0
8 0 0
8 0 0
8 0 0

See full feed

Build Time

-

Jun 04, 2015 - 09:20 UTC
Jun 04, 2015 - 06:41 UTC
Jun 04, 2015 - 05:20 UTC
Jun 04, 2015 - 05:17 UTC
Jun 04, 2015 - 05:13 UTC
Jun 04, 2015 - 05:06 UTC

11

Comparing with Worch

Worch Overview
Yes, the same
Worch = Waf + Orchestration:

» software suite builder used to build large suites of software

composed of many packages from all different sources. Very similar, declarative and short

» configuration manager using a simple declarative language in order specially for ‘standard’ packages
to precisely and concisely assert all build parameters.

» workflow manager using Waf to run interdependent tasks in parallel Yes, as good as make - (ninja)

» software build features “batteries included” for exercising many

common package-level build methods External Project comes with their
» bootstrap aggregation packaged using Python's setuputils with batteries
support for developing domain-specific extensions to easily create the
build environment. Bootstrap very simple
» policy-free leaving issues such as installation layout, target package requirements: cmake, svn/git, make

formats, suite content, build parameters up to the end user.
Policies encoded in CMake code

easy to change :-)

12

Comparing with Homebrew

Why (Not) Homebrew?

» Works out the box on Mac and Linux

» Extremely easy to use and add new packages

« Good support for build variants and C++ Standards

* Only provides a single rolling release

* Doesn’t directly support git tags or rollback on versions

* Binary packages not completely relocatable(*)

Yes, and also Windows?

Similar or perhaps even simpler

Yes, using CMAKE_BUILD_TYPE
and CXX/C global flags

Many many concurrent releases are
supported

Yes

Yes

15

Conclusions

* Very simple setup and instructions, adding a new package
is really trivial

+ ~ 13 <LOC>/package (including comments and blank lines)

* Many concurrent configurations, many platforms
supported

* Very easy customizable

+ New build steps (e.g. installation of log files, RPM creation, etc.)
can be added very easily and applicable to all 150 packages

* All customizations and policies in ~800 lines of CMake code

* Results are relocatable, and be installed in several ways
appreciate to the users

14

