CGBM Hardware status

Aoyama Gakuin University

Yuta Kawakubo

For the CGBM team

Other view

- Development detector response matrices
 - 1st Ground Calibration test
 - Simulator of CGBM
 - Development HXM response matrices
 - Development SGM response matrix
- Low detection efficiency of X-rays on HXM1
- Long term gain monitoring
- Efficiency of X-ray on HXM0
- Summary

1st Ground Calibration test

2014/1/15-1/28 @ JAXA Tsukuba Space Center

Simulator of CGBM

Red: Not yet

HXM

- Size and shape of detectors
- Structure material (typical)
- Energy resolution of detectors
- Map of peak channel (511 keV)
- Map of peak channel (6.4, 14 keV)

SGM

- Size and shape of detectors
- Structure material (typical)
- Energy resolution of detectors.

Development HXM response matrices

Red: Measurements (normal incidence) Blue: Simulation (normal incidence)

The simulation reproduce the measurements (> 40 keV).

Development SGM response matrix

Other view

- Development detector response matrices
 - 1st Ground Calibration test
 - Simulator of CGBM
 - Development HXM response matrices
 - Development SGM response matrix
- Low detection efficiency of X-rays on HXM1
- Long term gain monitoring
- Efficiency of X-ray on HXM0
- Summary

Low detection efficiency of X-rays on HXM1

Note:

- During the first calibration run at JAXA (Jan 2014), the detection efficiency of X-rays below 10 keV photons was low on HXM1 comparing with that of HXM2.
- We checked HXM low-energy X-ray response at the 2nd and 3rd calibration test.

Testing of low-energy X-ray response of HXM after integration

After the integration of CALET including environment testing as thermal vac

2nd PI cal: 2015/1/5-1/6 @ JAXA Tsukuba 3rd PI cal: 2015/ 3/12 @ JAXA Tsukuba

Low-energy response measurement on HXM (⁵⁷Co)

2nd calibration (Jan 2015) at EMC test

3rd calibration (Mar 2015) during 72 hr running test

- The same folder was used
- Different room (the configuration around detectors were changed)

Excess counts are seen below 10 keV for both HXM1 and HXM2

HXM2 degraded to same extent as HXM1.

Other view

- Development detector response matrices
 - 1st Ground Calibration test
 - Simulator of CGBM
 - Development HXM response matrices
 - Development SGM response matrix
- Low detection efficiency of X-rays on HXM1
- Long term gain monitoring
- Efficiency of X-ray on HXM0
- Summary

SGM: Background data

Using 1461 keV of ⁴⁰K(potassium).

⁴⁰ K (1461keV)	11/7	11/14	11/20	12/16		12/18	2015 1/6
Temp [°C]	23.3°C	36.7°C	9.7 °C	24.2°C	24.2 °C	25.0 °C	24.0 °C
Peak ch	210.4±0.2	179.6±0.1	271.2±0.2	213±0.1	213±0.3	213±0.3	211±0.04
E-res [%]	7.5±0.2	7.9±0.2	6.8±0.2	7.3±0.1	7.5±0.3	7.6±0.3	7.6±0.1

SGM: 1461 keV peak

Peak channel

Temperature [deg]

HXM1 background data (High-gain)

Count

Using 32 keV line of background.

After thermal vac test, HXM1 gain become higher than before.

starsystem 8- lan-9

HXM1: 32 keV peak

Peak channel

HXM 2: background data (High Gain)

Count

Similar trend to HXM1.

HXM2: 32 keV peak

Peak channel

Temperature [deg]

Other view

- Development detector response matrices
 - 1st Ground Calibration test
 - Simulator of CGBM
 - Development HXM response matrices
 - Development SGM response matrix
- Low detection efficiency of X-rays on HXM1
- Long term gain monitoring
- Efficiency of X-ray on HXM0
- Summary

HXM0

HXM0

HXM0 + PMT

⁵⁷Co Spectrum

 The HXMO spectrum shows that 6.4 keV line is stronger than 14 keV line. (not same as HXM1 at 1st PI cal)

HXMO:long term efficiency monitoring

We compared HXM0 efficiency and HXM2 efficiency at 1st PI CAL.

The efficiency of HXM0 is same HXM2 at 1st PI cal.

Summary

- Development detector response matrices

 HXM
 - The simulation reproduce the measurement well above 40 keV.
 - SGM
 - The angular dependences for 511keV and 1275 keV are well reproduced by the simulations.
- Low detection efficiency of X-rays on HXM1
 - 2nd + 3rd PI cal: Excess counts are seen below 10 keV both HXM1 and HXM2.
 - HXM2 was degraded to same extent as HXM1
- Long term gain monitoring
 - HXM gain is higher after the thermal vac test than before thermal vac test.
- Efficiency of X-ray on HXM0
 - The efficiency of HXM0 that have never been used at environment test is same HXM2 at 1st PI cal.
 - We can not see degradation of HXM0.

Back up

Summary

- Development detector response matrices
 - 1st Ground Calibration test
 - We could collect enough data to calibrate the detectors.
 - Development HXM response matrices
 - The simulation spectra reproduce the on-axis calibration source spectra(>80 keV).
 - Development SGM response matrix
 - The simulation spectra reproduce the calibration source spectra from arbitrary direction.
 - The SGM response marix was developed using current SGM simulators.

HXM: 6.4 keV (Fe) 2D map

HXM1: No count-rate at the upper part (Y > 0) of the crystalHXM2: Donuts shape feature in the gain mapHXM1 & 2: Count-rate is not uniform across the crystal surface

HXM: 6.4 keV spectrum

HXM1: 6.4 keV spectrum at X=0

HXM2: 6.4 keV spectrum at X=0

Red: Y=0, green: Y=-20, blue: Y=-30, light blue: Y=20, pink: Y=30

- Strength of 6.4 keV line of HXM1 decrease at off-center points. Overall strength of 6.4 keV line is weaker for HXM1 comparing to that of HXM2.
- HXM2 doesn't show a strong position dependence.

2nd and 3rd Ground Calibration test

2nd ground calibration test: 2015/1/5-1/6 @ JAXA Tsukuba 3rd ground calibration test: 2015/ 3/12 @ JAXA Tsukuba

CGBM could resolve some lines of BG and ⁵⁷Co clearly.

HXM1: 32 keV peak

HXM2:32 keV peak

Summary

- Low energy response of HXM
 - 1st PI calibration: Low detection efficiency in HXM1 (HXM2 looked normal)
 - 2nd PI calibration: Excess counts below 10 keV (both HXM1 and HXM2). This excess is not visible in the background spectrum.
 - 3rd PI calibration: Same trend to 2nd PI cal. Amount of the excess is more or less similar to the 2nd PI cal.
- Long term gain monitoring
 - HXM1 and HXM2 gain gets higher during the thermal vacuum test. After that, the gain is gradually decreasing. This gain change can't be understood by the PMT ' characteristics.
 - SGM gain change is consistent with the BGO temperature characteristics.

HXMO:low-energy response check

Light shielding sheet

⁵⁷Co Spectrum

 The HXMO spectrum shows that 6.4 keV line is stronger than 14 keV line. (not same as HXM1 at 1st PI cal)