

Status of e/p separation studies

John Krizmanic 25-June-2015

• **Goal:** To demonstrate that CALET can measure electrons and reject protons with high efficiency using Epics-based simulation of CALET CAD model.

• **Compare:** Epics-based results to FLUKA-based results reported by Paolo Maestro at the 2014 TIM in Tokyo.

• **Procedure (with input from Alex Moiseev):** Develop further selection criteria, eventually determining the probability that a proton of energy E will be recorded as an electron with energy E'. Need to have the the probability of accepting a proton event in the electron sample to be small, eg < 10^{-5} .

• Presenting current status of the analysis at GSFC.

LSU HPC Data Set

CALET Epics Configuration:

- Epics9.161, Cosmos7.644, CALET CAD Model Rev 15.
- Dpmjet3 hadronic interation model.
- Events thrown over partial sphere up to 110° zenith angle.
- All thrown events recorded, no pre-selection. Allows for complete data set.
- Events generated in decades of energy, E⁻¹ spectra.

Energy Bin	Protons Thrown	Electrons Thrown	Analyzed here
10 – 100 GeV	6.1e6	4e6	
100 – 1000 GeV	43.0e6	4e6	p 7e6; e 0.5e6
1 – 10 TeV	43.0e6	4e6	p 6e6; e 0.5e6
10 – 30 TeV		1e6	
10 – 100 TeV	27.9e6		
100 – 1000 TeV	0.6e6		

Event Selection

As a starting point, use Paolo's selection criteria he used for the FLUKA-based analysis he presented at the last CALET TIM (see Slides--maestro-ep_discrimination_fluka.pdf).

Selection Cuts:

- 1. Event types 1-4, using MC tracking for now.
- 2. HE trigger: TASC1 \geq 55 MIP & IMC8xy \geq 15 MIP
- 3. Selection based upon Fraction of Energy in last hit TASC layer (f_E) vs Energy Weighted Spread in TASC (R_E).
- Fraction of energy deposited in the last IMC layer within 1 Moliere radius (E1MR / EIMC).
- 5. Fit of the longitudinal profile in IMC (*not implemented in GSFC analysis presented here*).

CALET	Event	: Туре	e Defi	nitions
	CALET	CAD Model	Rev 15	
Acc. Type 1: IMC Lay 1 Top && TASC Top	Асс Туре	GF (Epics) cm ² sr	GF (Wefel) cm ² sr	Acc. Type 2 (1 not included): IMC Lay 1 Top && TASC Top
(1 PWO log inside) && TASC Bottom (1 PWO log Inside)	1	466.1±6.1	464.0±2.4	&& TASC Bottom (outside PWO logs only)
	2	175.8±3.8	181.2±3.7	
	3	123.8±3.2	124.0±4.1	
	4	172.9±3.7	-	
Acc. Type 3: NOT (Type 1 or Type 2)	Total	938.6±8.7	-	Acc. Type 4: NOT (Type 1 or 2 or 3)
IMC Lay 4 Top && TASC Top && TASC Bottom June 25, 2015		CALET TIM in Pisa		IMC Lay 4 Top && TASC Top && NOT (TASC Bottom) && TASC Length > 27 X ₀₄

Summary of Paolo's FLUKA Results I

Particle	Energy range (GeV)	No. events
Electrons	20-2000	5.8x10 ⁵
Protons	10 ³ -10 ⁵	8.3x10 ⁵

 $912 \text{ GeV} \le \text{E}_{\text{TASC}} \le 1000 \text{ GeV}$

$$R_E = \sqrt{\frac{\sum_i (\sum_j \Delta E_{i,j} \times R_i^2)}{\sum_i \sum_i \Delta E_{i,j}}}$$

 $f_F = E_{evit}/E_{TASC}$

$$R_i = \sqrt{\frac{\sum_j (\Delta E_{i,j} \times (x_{i,j} - x_{i,c})^2)}{\sum_j \Delta E_{i,j}}}$$

i layer # 0,...,11 j log # 0,...,15 ΔEij energy deposit in log j layer i xi,j coordinate of log j in layer i xi,c intercept of shower axis with layer i

Summary of Paolo's FLUKA Results I

912 GeV $\leq E_{TASC} \leq 1000$ GeV

Selection cut	Protons	Electrons	
In MC acceptance	829561	11588	
In TASC E bin	12956	11588	
HET	6092	11588	
IMC tracking	5790	11112	
f _E vs R _E	31	8666	
IMC 1RM cut	9	8177	>
IMC profile fit	6	8174	
	$\varepsilon_p = 7.2 \times 10^{-6}$	ε_{ele} =0.705	
	$R = \varepsilon_{ele}/\varepsilon_p \sim 9.75 \times 10^4$		
ε _P = 1.1e-5	$\varepsilon_{e} = 0.706$		

100 – 1000 GeV Protons 100 – 1000 GeV Electrons

Selection Cut	Protons 100 – 1000 GeV	Electrons 100 – 1000 GeV
Thrown Events	7,001,600	500,224
Туре 1 - 4	40,602	2839
+ HET	10,148 (ε _P = 0.250)	2839 (ε _e = 1.0)
+ f _E vs R _E selection	67 (ε _P = 1.7Ε-3)	2629 (ε _e = 0.93)
+ E1MR / EIMC selection	32 (ε _P = 7.9E-4)	2532 (ϵ_{e} = 0.89)
Comments	18 events < 100 GeV not considered in this table	

In 100 – 1000 GeV electron band:

- Proton rejection factor: $\varepsilon_e / \varepsilon_p = 1.1e3$
- Mizuno Flux Ratio: $\Phi_p/\Phi_{e\pm} = 362 \rightarrow 33\%$ proton contamination in 100 – 1000 GeV electron range from 100 – 1000 GeV protons

Mizuno Reference: ApJ 614, 2004

Proton Flux: $\phi_p(E) \sim E^{-2.83}$ e[±] Flux: $\phi_{e\pm}(E) \sim E^{-3.3}$

June 25, 2015

1 – 10 TeV Protons 100 – 1000 GeV Electrons

Selection Cut	Protons 1 – 10 TeV	Electrons 100 – 1000 GeV
Thrown Events	6,002,688	500,224
Туре 1 - 4	34,886	2839
+ HET	11,403 (ε _P = 0.337)	2839 (ε _e = 1.0)
+ E _{TASC} < 1 TeV	5,216	2839
+ f _E vs R _E selection	32 (ε _p = 9.2e-4)	2629 (ε _e = 0.93)
+ E1MR / EIMC selection	14 (ε_p= 4.0Ε-4)	2532 (ε_e= 0.89)
+ 912 \leq E _{TASC} < 1 TeV	6 (ε_P= 1.7e-4) (FLUKA 1.1e-5)	ϵ_{e} = 0.80 (FLUKA 0.71)
Comments	1 evt < 100 GeV not considered in this table	

In 100 – 1000 GeV electron band:

- Proton rejection factor: $\varepsilon_e / \varepsilon_p = 2.2e3$
- Mizuno Flux Ratio: $\Phi_{\rm P}/\Phi_{\rm e\pm} = 6 \rightarrow 0.3\%$ proton contamination in
- 100 1000 GeV electron range from 1 10 TeV protons.

June 25, 2015

1 – 10 TeV Protons 1 – 10 TeV Electrons

Selection Cut	Protons 1 – 10 TeV	Electrons 1 – 10 TeV
Thrown Events	6,002,688	500,224
Туре 1 - 4	34,886	2959
+ HET	11,403 (ε _P = 0.337)	2959 (ε _e = 1.0)
+ $E_{TASC} \ge 1 \text{ TeV}$	6,087 (ε _p = 0.174)	2959
+ f _E vs R _E selection	97 (ε _P = 2.8Ε-3)	1882(ε _e = 0.636)
+ E1MR / EIMC selection	27 (ε _P = 7.7Ε-4)	1683 (ε _e = 0.569)
Comments	1 evt < 100 GeV	

In 100 – 1000 GeV electron band:

- Proton rejection factor: $\varepsilon_e / \varepsilon_p = 739$
- Mizuno Flux Ratio: $\Phi_{\rm p}/\Phi_{\rm e\pm} = 1083 \rightarrow 147\%$ proton contamination
- in 1 10 TeV electron range from 1 10 TeV protons.

What is causing the proton background?

• Sum energy and number of hit fibers within $1 R_{MOL}$ from track.

1 – 10 TeV Protons

1 – 10 TeV Electrons

• Compare distributions of 1-10 TeV protons to 1-10 TeV electrons (HPC run data).

- Define selection criteria:
 - Σ IMC Layers 1 3 : N_{HIT} < 20
 - Σ IMC Layers 1 3 : N_{HIT} < 50
 - Σ IMC Layers 1 3 : N_{HIT} > 30

June 25, 2015

1 – 10 TeV Protons 1 – 10 TeV Electrons

Selection Cut	Protons 1 – 10 TeV	Electrons 1 – 10 TeV
Thrown Events	6,002,688	500,224
Туре 1 - 4	34,886	2959
+ HET	11,403 (ε _p = 0.337)	2959 (ε _e = 1.00)
+ $E_{TASC} \ge 1 \text{ TeV}$	6,085 (ε _P = 0.174)	2894 2959 (ε _e = 0.98)
+ E1MR / EIMC selection	3082 (ε _p = 8.83e-2)	2872 (ϵ_{e} = 0.97)
+ IMC hit dist selection	1314 (ε _p = 3.77e-2)	2539(ε_e= 0.86)
+ f _E vs R _E selection	73 (ε _P = 2.1e-3)	2411 (ε_e= 0.81)
Comments	1 evt < 100 GeV	

In 100 – 1000 GeV electron band:

- Proton rejection factor: $\varepsilon_e / \varepsilon_P = 386$
- Mizuno Flux Ratio: $\Phi_{\rm p}/\Phi_{\rm e\pm} = 1083 \rightarrow 281\%$ proton contamination
- in 1 10 TeV electron range from 1 10 TeV protons.

IMC Profile for an accepted proton Event

- 1 10 TeV Proton Sample
- $E_{TASC} \ge 1 \text{ TeV}$
- Top Plot: Energy per layer for fibers within 1 R_{MOL}
- Bottom Plot: Number of hit fibers per layer within 1 R_{MOL}
- Can this be exploited to reject protons based upon this 'impulsive' response in IMC.

June 25, 2015