Report on the analysis of the ion beam test with STM and BBM in 2015

June. 25, 2015
Y. Akaike for C\&T in Japan

CALET-TIM @Pisa June 24 - 26, 2015

Outline

- Charge identification by CHD
- For 150 AGeV run, Si tracker did not be put
- MIP calibration of TASC
- Energy measurement by TASC
- 150 AGeV fragment run

Calibration of CHD using Ar beam

Analysis procedure

- select the beam hit channel using reconstructed track by IMC
- Fit the peak region by Gauss function
- Beam: Ar 150AGeV
- RunNo: 416 - 513
- HV_CHD: -450V

Fragments

Analysis procedure

-convert from ADC to the number of particles corresponding to Ar-MIP

- select the hit CHD channel using reconstructed track by IMC, make correlation map between CHD-X and Y - using the events which has correlation, select events satisfied with $\left|N_{X}-N_{Y}\right|<0.1$
- make 1D histogram of the average of the number of Ar-MIP

Fitting (Z>5)

- Fit by Gaussian

Fitting (Z>5)

- Fit by Gaussian
- use events between 1σ region for following data analysis

Fitting (Z=2, 3)

- use Landau function convoluted with Gaussian
- select below region for energy measurement analysis (MPV-2 σ) < $\mathrm{N}<(\mathrm{MPV}+5 \sigma$) MPV: Landau's MPV
σ : Landau's sigma

Charge resolution of CHD

Note: in case of 2013 exp., the information of Si-detector was used in case of 2015 exp. (150AGeV run), the info is not used.

MIP calibration of TASC

Analysis procedure

- Use He events selected by CHD
- Fit He peak as a tentative MIP without single event selection
- Select single events using Likelihood methods
- Create template from MC and noise of experimental data
- Fit He single peak

Calibration using He events

Analysis procedure

- Use fragment run (13 AGeV)

RunNo: 572,574,576,578,580,582

- Select He events by CHD
- Select events the reconstructed track by IMC pass through each PWO log.
- make figures of ADC distribution. (Right figures show the single peak region)
- Fit the peak by gaussian
- The peak value is used as the (tentative) He-MIP for each channel

Single events of He

- EPICS v9.167

Comsos v7.645

- DPMJET-III
- He 13 AGeV

Penetrating event ratio is
~14 \%
\Rightarrow event selection

$$
\begin{aligned}
& \text {-all } \\
& \text {-no-interaction } \\
& \quad \text { (MC-true) }
\end{aligned}
$$

*MC data

Single events of He

- EPICS v9. 167

Comsos v7.645

- DPMJET-III
- He 13 AGeV

Penetrating event ratio is
~14 \%
\Rightarrow event selection
-all

- upstream of det.
-CHD
-IMC
-TASC1-4
-TASC5-8
-TASC9-12
-no-interaction

*MC data

Templates of $\mathrm{MIP}_{\mathrm{He}}$ for Likelihood analysis

*MC data
using noise of pedestal, template distribution is made by reproduce MC
(in ROOT...)
$N=$ gRandom \rightarrow Gaus $\left(\frac{E}{E_{\text {peak }}}, \frac{\sigma}{\mu}\right)$
N : number of particles
E : deposit energy of MC
$E_{\text {peak }}$: He peak energy of MC σ : pedestal noise of exp. data μ : peak of He of exp. data

Single event selection by Likelihood

$$
L=\sqrt[12]{\sum_{i}^{12} \log _{10}\left(P_{i}(s)\right)}
$$

$$
\text { if } s<-1 \text { or } 5<s, \quad P_{i}(s)=0,
$$

$$
\Rightarrow \text { such events are expressed }
$$ as "overflow" in following figure

	TB	MC
Entries	2215	43175
Overflow	1795	34070
Ratio	$81(\pm 2) \%$	79%

(*) In MC, beam profile is not considered.

- selected events

Corrrarmor
E
为

He MIP

-all events

- selected events (scaled)

Correlation of PMT, APD High/Low

- Using 150 AGeV run, make the correlation plots of high gain and low gain

Analysis of shower events of fragment beam

Event Selection

- Charge selection by CHD
- High energy shower trigger
$-N_{\text {TASC }-X 1}>\frac{55}{4}$ MIP $_{\text {He }}$
- Position limit
- Use events that pass through the center of X 1 and Y 1 PWO log ($2 \mathrm{~cm} \times 2 \mathrm{~cm}$)

Event number after the each selection

run383,385,387,389 Ar-Ion 150AGeV 20,0000event
Beam file:H8A.CALET. 005 Position: Bb+

All particle (Tag by CHD)						High energy shower trigger
$\mathbf{1}$	-	-	-	-	Position limit	

the number of particles of TASC ($150 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$)

Note: the single events of heavy particles $(\mathrm{Z}>7)$ are triggered even if HES is applied because $d E / d x \propto z^{\wedge} 2$.
the single peak is about $\mathrm{Z}^{2} / \mathrm{Z}_{\mathrm{He}}{ }^{2} \times 12\left[\mathrm{MIP}_{\mathrm{He}}\right]$.
ex.) O: $8^{2} / 2^{2} \times 12 \sim 192$ MIP $_{\mathrm{He}}$

Gauss-fit for shower event region

$※ x$-axis linear

Note: we have not done the shower event selection, in this distribution, the events which penetrate the detector or interact at lower layer are included.

Linearity of the shower energy

Momentum P
$P=150 \times 2 Z[\mathrm{GeV}]$
beam condition: $\mathrm{A} / \mathrm{Z}=2.0$
Note: We used APD high/low gain channel, not used PD. in case of higher charge beam, some events have saturate channels.

Energy resolution

Note: this results do not show the energy resolution of CALET because the detector configuration is different from flight model..

Comparison with MC

Simulation

- EPICS v9.167 (Cosmos v7.645)
- DPMJET-III
- direction: vertical
- incident position: gauss($\sigma=0.5 \mathrm{~cm}$)

Note: in MC, the beam profile, quenching are not considered.

Future work for CERN2015 exp.

TASC

- Update the methods of single event selection
- evaluate the shower linearity, resolution
- compare with MC
- Get quenching parameter for PWO
- select the MIP events each particles
- apply the parameters into the MC

IMC/CHD

- Evaluate the charge resolution with track reconstruction
- accuracy of track reconstruction
- charge resolution not only CHD, but also CHD and IMC-SciFi
- Optimize the methods to find the interaction point

