

Perspective on width measurements

Roberto Covarelli (University / INFN of Torino)

CMS

The Higgs width at the LHC

- Direct decay width measurements at the peak limited by experimental resolution:
 - $\underline{f(m)} \sim \underline{BW(m, \Gamma)} \otimes \underline{R(m, \sigma)}$
 - If $\Gamma \ll \sigma$, not possible to disentangle natural width
 - ▶ SM Higgs width at $m_H = 125$ GeV is $\Gamma_H = 4.07$ MeV
 - ▶ Experimental resolution is $\sigma \sim 1-3$ GeV for H \rightarrow ZZ* \rightarrow 4l and $\gamma\gamma$

 $\Gamma_{\rm H}$ < 3.4 GeV @ 95% CL (CMS) $\Gamma_{\rm H}$ < 2.6 GeV @ 95% CL (ATLAS) Similar results from $\gamma\gamma$ WILL NOT IMPROVE MUCH IN Run2

Off-shell: MC simulation

gluon-gluon fusion

- Using MC event generators gg2VV and MCFM (LO in QCD)
 - Including Higgs signal, continuum and interference
 - Signal m_{VV} -dependent k-factors (NNLO/LO) applied G. Passarino (Eur. Phys. J. C 74 (2014) 2866)
 - Using results from M. Bonvini et al.
 (Phys. Rev. D88 (2013) 034032), assume
 k_{continuum} = k_{signal} as central value
 - ATLAS uses Sherpa+OpenLoops to correct acceptance as a function of p_T(VV)

VBF production

- Using PHANTOM and MadGraph
 - VBF production is 7% of the total at peak, slightly enhanced at high mass by trend of $\sigma_{VBF}(m_{77}) \sim 10\%$
 - ▶ Higher order effects very small (~6%)

 $q\bar{q} \rightarrow ZZ\,/\,WZ\,/\,WW$ dominant backgrounds

- Use POWHEG at NLO QCD
 - NLO EW corrections from external calculations (S. Gieseke et al, Eur. Phys. J. C 74 (2014) 2988) applied as a function of m_{VV}
 - ATLAS also applies corrections for NNLO QCD effects (Phys. Lett. B 735 (2014) 311, Phys. Rev. Lett. 113 (2014) 212001)

CMS collab., Phys. Lett. B 736 (2014) 64

ATLAS collab., arXiv:1503.01060

Analysis of $ZZ \rightarrow 41$

Event selection:

- As in main Higgs analysis
- Off-shell analysis region: $m_{4l} > 220 \text{ GeV}$

Kinematic discriminants:

- Use 7 variables completely describing decay kinematics $(m_{Z1}, m_{Z2}, \text{ five lepton angles})$
- Build joint probabilities for various contributing processes (gg \rightarrow 4l signal, gg \rightarrow 4l total, qq \rightarrow 4l etc.) from MCFM matrix elements

ATLAS

$$ME = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right)$$

CMS

$$\mathcal{D}_{gg} = \frac{\mathcal{P}_{tot}^{gg}}{\mathcal{P}_{tot}^{gg} + \mathcal{P}_{bkg}^{q\bar{q}}}$$

Analysis of $ZZ \rightarrow 212v$

- Event selections:
 - As in main Higgs analysis
 - Analysis variable is the transverse mass

$$m_{\mathrm{T}}^2 = \left[\sqrt{p_{\mathrm{T},\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\mathrm{T}}^{\mathrm{miss}^2} + m_{\ell\ell}^2} \right]^2 - \left[\vec{p}_{\mathrm{T},\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}} \right]^2$$

- Background estimation:
 - ▶ True ZZ and WZ: from MC
 - tt: use lepton flavor symmetry: compute the ee/eμ and μμ/eμ ratios in control regions, and apply the ratios to eμ events in signal region
 - <u>Z+jets</u>:
 - ATLAS: inverting cuts
 - ▶ CMS: Use γ +jets with modified kinematics

Analysis of WW $\rightarrow e\mu 2\nu$

- Event selections:
- rent selections: $\begin{array}{c} \text{Two leptons of different flavors only, rest is simila} \end{array}$ to main Higgs analysis
 - Analysis variable is a combination of dilepton mass and transverse mass

$$R_8 = \sqrt{m_{\ell\ell}^2 + \left(a \cdot m_{\rm T}^{WW}\right)^2}.$$

- \rightarrow a = 0.8 and R₈ > 450 GeV optimized to separate off-shell from on-shell contributions
- Background estimation:
 - Main background contributions from $t\bar{t}$ and $q\bar{q} \rightarrow$ WW: normalization from data using suitable control regions

Analysis procedure

- ▶ For a given production mode (ggF or VBF):
 - > Off-shell production; $\mathcal{P}_{ ext{tot}} = \mu_{ ext{off}} \mathcal{P}_{ ext{sig}} + \sqrt{\mu_{ ext{off}}} \mathcal{P}_{ ext{int}} + \mathcal{P}_{ ext{bkg}}$
 - \triangleright P are MC- or data-derived templates for variables in each analysis
 - > Sum of all terms (also including other backgrounds) gives final likelihood
- Analysis variables:
 - ightharpoonup ZZ
 ightharpoonup 4I: mass and ME discriminant (CMS) or ME discriminant only (ATLAS)
 - ▶ $ZZ \rightarrow 2l2v$: transverse mass
 - ▶ WW \rightarrow eµ2 ν : only event count in R₈ off-shell region (ATLAS only)
 - ▶ All analysis yields evaluated inclusively in N_{jets} because most higher-order corrections from theory are only available in this form
- When combining with on-shell region, define $\mu_{\text{off}} = \mu r = \mu \left(\Gamma / \Gamma_{\text{SM}} \right)$ and fit simultaneously with:
 - ightharpoonup On shell-production (4l and WW only!): $\mathcal{P}_{ ext{tot}} = \mu \, \mathcal{P}_{ ext{sig}} + \mathcal{P}_{ ext{bkg}}$

Systematic uncertainties

- Theoretical uncertainties (dominant)
 - gg and $q\overline{q} \rightarrow VV$ processes:
 - QCD scale variations by a factor of 2 up and down
 - Variation of Parton Distribution Functions (PDFs)
 - ▶ Unknown NNLO k-factor on continuum gg \rightarrow VV background:
 - ► CMS: use 10% additional uncertainty on nominal hypothesis ($k_{continuum} = k_{signal}$)
 - ▶ ATLAS: give all results in a range of k_{continuum} / k_{signal} between 0.5 and 2
 - Uncertainties on NLO EW correction as 100% of the NLO QCD x NLO EW corrections
- Experimental uncertainties (subdominant)
 - Lepton efficiencies
 - ▶ Jet energy scale effects on E_T^{miss} and b-tagging efficiency
 - ▶ Background estimations from data control regions ... etc.

Limits on μ_{off} (41, 212 ν , WW)

- In the generic NP scenario, the off-shell signal strengths are not directly related to Γ
- Combined limits on μ_{off} derived under two assumptions:
 - μ_{off} for ggF and VBF are the same (i.e. couplings for the two processes scale by the same amount)
 - ▶ Observed (expected) 95% CL limit: μ_{off} < 6.2 (8.1)
 - ▶ Variations with gg \rightarrow VV k-factor: μ_{off} < [5.1, 8.6]
 - μ_{off} for VBF is I (NP only in gluon-Higgs effective couplings) and determine μ_{off, gg}
 - Observed (expected) 95% CL limit: $\mu_{\text{off, gg}} < 6.7 (9.1)$
 - Variations with gg \rightarrow VV k-factor: $\mu_{\text{off,gg}} < [5.3, 9.8]$

Limits on Γ

Assuming same on-shell and off-shell couplings

CMS: Observed (expected) 95% CL limit: r < 5.4 (8.0) p-value = 0.25

Best fit value: $r = 0.4^{+1.8}_{-0.4}$ equivalent to $\Gamma < 22 (33) \text{ MeV}$ $\Gamma = 1.8^{+7.7}_{-1.8} \text{ MeV}$

 $\mu_{ggF} = 0.81^{+0.47}_{-0.37}$ $\mu_{VBF} = 1.7^{+2.2}_{-1.7}$ both compatible with SM (μ = 1)

ATLAS: Almost identical central results
If assumption on couplings only valid for VBF and

$$r = I$$
 $\underline{R}_{gg} = \kappa_{g, \text{ off-shell }} / \kappa_{g, \text{ on-shell }} \leq 6.0$

Perspectives for Run2 (I)

- σ(13 TeV)/σ(8TeV):
 - ightharpoonup $q\bar{q} \rightarrow VV$ background ~ 2 (no cuts!)

 \blacktriangleright When coming close to r = Iinterference plays a role → effective number of off-shell signal events S+I (at constant μ) does not scale anymore with r

Perspectives for Run2 (II)

Role of systematics is important

- Calculations of gg → VV and qq → VV processes at higher orders (both QCD and EW) would reduce dominant systematic uncertainties
- In partilcular calculation as a function of N_{jets} are needed to optimize analysis
- Experimental uncertainties do not contribute equally in all final states
 - For 4l they are currently negligible w.r.t. statistical ones
 - For Γ their contribution is even smaller than for μ_{off} , as many of them cancel in the off-shell to on-shell ratio

Back up

19