Interference effects in the H → γγ + 2 jets channel at the LHC

CERN, June 22th, 2015

Nerina Fidanza

University of Buenos Aires

In collaboration with F. Coradeschi, D. De Florian, L. Dixon, S. Hoeche, H. Ita, Y. Li and J. Mazzitelli

HXSWG open meeting

OUTLINE

Motivation

• Signal-background interference in $H \rightarrow \gamma \gamma$: inclusive case

- Signal-background interference in H $\rightarrow \gamma\gamma + 2$ jets
- Onclusions

Motivation

Signal-background interference

Shift in the diphoton invariant mass peak

Shift is highly dependent on the Higgs Width

May allow for its measurement and/or bound

Inclusive case:

- 2-loop
- \circ $\mathcal{O}(g_s^2)$

Interferes with...

- 1-loop
- \circ $\mathcal{O}(g_s^2)$

continuum

After convolution with the broad experimental diphoton mass resolution (highly antisymmetric nature of the interference terms is enhanced by the convolution)

Shift in the diphoton mass peak towards lower invariant masses

LO: ~100 MeV

NLO: ~60-70 MeV

MASS SHIFT AT NLO AND WIDTH DEPENDANCE

 $_{f 0}$ Shift depends on Γ $_{f H}$

We can use it to bound its value

Maintaining the Higgs signal constant

Shift proportional to $\sqrt{\Gamma_H}$

Less model dependent than off-shell measurements

Shift shows a strong dependance on pT_H

WHY LOOK AT $H \rightarrow \gamma\gamma + 2$ jets

- We need another measurement of the Higgs mass to compare and extract the shift
- Resonance in the diphoton channel: $m_H^{\gamma\gamma} = 125.07 \pm 0.25 \, (\mathrm{stat}) \pm 0.14 \, (\mathrm{syst}) \, \mathrm{GeV}$

In the ZZ* mode: $m_H^{ZZ*} = 125.15 \pm 0.37 \, (\mathrm{stat}) \pm 0.15 \, (\mathrm{syst}) \, \mathrm{GeV}$

Yielding a mass difference of: $m_H^{\gamma\gamma} - m_H^{ZZ^*} = -80 \pm 490 \; \mathrm{MeV}$

Using a reference mass with photons Reduced systematic uncertainties

Subsample of the inclusive GF $\gamma\gamma$ sample with non zero p_{T,H}

2 photons + 2 jets

Rare but low background, so reasonable statistical uncertainties on the possition of the mass peak

More robust theoretically than high-pT_H region in the inclusive pp $\rightarrow \gamma \gamma$

20000

هوووو

Mass shift in yy + 2 jets

Two independent calculations:

- Analytic amplitudes obtained with the help of FeynArts, FeynCalc and FormCalc Interface with numeric phase-space integration via a custom Fortran code
- Events generated with SHERPA and COMIX used to compute tree level amplitudes, and cross checked with MADGRAPH5
- Gluon channel contribution (formally higher order) included It's matrix element was provided by the BlackHat library

Dependence of the mass shift on the width of the Gaussian used to simulate the experimental mass resolution of the detector

 δm_H increases with σ_{MR} in a roughly linear way, for five different choices of cuts

BOUNDING THE HIGGS WIDTH

Much smaller shift than in inclusive case

Using only this for bounding the width is not so good

Useful as a reference mass for experimental measurement of the mass difference:

$$\Delta m_H^{\gamma\gamma} \equiv \delta m_H^{\gamma\gamma,\,\rm incl} - \delta m_H^{\gamma\gamma,\,\rm VBF}$$

Higgs width is varied

its couplings must also be modified, to prevent the total cross section from suffering large variations

- Assume couplings of the Higgs with the top quark and massive weak bosons deviate from the SM predictions by real factors
- We adjust Γ to maintain the Higgs signal strength near the SM value.
- o Δm_H^{γγ} α √Γ/Γ_{SM}

Conclusions

Signal-background interference leads to a shift in the diphoton inv mass peak

The mass shift depends on the Higgs width, and can therefore be used to bound its value

In the inclusive case the shift is O(50-100 MeV) for SM values

Much smaller shifts for Higgs + 2 jets; VBF and GF with opposite signs

Oan be used as a control region against the inclusive case