
 1

Summary of continued work
on energy profiling

Mikael Hirki

June 8, 2015

 2

About me

● I'm a Master's degree student at Aalto (CS
program)

● I have prior experience in performance profiling
and optimization

● I'm doing my thesis on energy profiling

 3

Outline

● Step 1: RAPL validation
● Step 2: ParFullCMS energy trace analysis
● Step 3: Power modeling

 4

About the hardware

● I'm using a Haswell desktop computer
– Intel Core i7-4770 @ 3.4 GHz

– Intel DH87RL desktop board

– 2 x 8 GB DDR3 1600 MHz

● Hyperthreading enabled
● Turbo Boost disabled

 5

RAPL findings

● The time between RAPL updates is 1 ms (+/- 20 µs)
● Haswell measures energy in units of 61 µJ
● Latency of reading one RAPL counter using PAPI is

about 550 nanoseconds
● Idle power consumption of my system is fairly low

– Package (PKG): 0.95 W

– Power plane 0 (PP0) / Processor cores: 18.4 mW

– Power plane 1 (PP1) / Integrated graphics: 10 mW

– DRAM: 1.6 W

 6

STREAM benchmark

● My results were very similar to what Filip
discovered

● STREAM stresses DRAM
– Highest bandwidth 14.7 GB/s

– DRAM power consumption is only about 5.5W

 7

ParFullCMS

● I installed ParFullCMS from
http://davidlt.web.cern.ch/davidlt/g4parfullcms/G
4test-src-V11.tar.gz

● Running in single-threaded mode for energy
profiling

http://davidlt.web.cern.ch/davidlt/g4parfullcms/G4test-src-V11.tar.gz
http://davidlt.web.cern.ch/davidlt/g4parfullcms/G4test-src-V11.tar.gz

 8

Graphical look at ParFullCMS

● I wrote my own tool to measure power
consumption every 5 ms
– This corresponds to how the energy profiling

module works

● No stack traces
● Plotted the energy trace using Gnuplot

 9

ParFullCMS initialization
(single-threaded)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8 9 10

P
o

w
e

r
co

ns
um

p
ti

o
n

(W
)

Time (s)

PKG power
PP0 power
PP1 power

DRAM power

DRAM
access burst High power consumption

caused by a recursive function

XML data
parsing

 10

ParFullCMS worker thread
(single-threaded)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 21 22 23 24 25 26 27 28 29 30

P
o

w
e

r
co

ns
um

p
ti

o
n

(W
)

Time (s)

PKG power
PP0 power
PP1 power

DRAM power

Strange drops in
power consumption

 11

ParFullCMS worker threads (8
threads)

 0

 10

 20

 30

 40

 50

 60

 20 21 22 23 24 25 26 27 28 29 30

P
o

w
e

r
co

ns
um

p
ti

o
n

(W
)

Time (s)

PKG power
PP0 power
PP1 power

DRAM power

Similar drops in power consumption

 12

Performance counters on Intel
hardware

● 8 programmable counters per core
– 4 counters per thread when using hyperthreading

● 3 fixed-function counters
– Unhalted core cycles

● Unhalted = core is not sleeping
● Core cycles is affected by frequency scaling

– Unhalted reference cycles (not available in perf)

– Instructions retired

 13

µops issued

● Known as UOPS_ISSUED.ANY in Intel's
manual

● The number of micro-operations issued by the
front-end to the back-end inside the processor
– UOPS_ISSUED includes speculative execution
– Failed branch prediction increases UOPS_ISSUED
– Conceptually, this is much closer to the actual

amount of work done than the number of instructions
retired

 14

Socket power compared to
instructions retired and µops issued

µops issued shows much better
correlation than instructions retired

High power consumption caused
by a recursive function

 15

Socket power compared to
instructions retired and µops issued

The mean number of µops remains the same
while power consumption drops

 16

Recursive function code
void G4ProductionCutsTable::ScanAndSetCouple(G4LogicalVolume* aLV,

 G4MaterialCutsCouple* aCouple,

 G4Region* aRegion)

{

 //Check whether or not this logical volume belongs to the same region

 if((aRegion!=0) && aLV->GetRegion()!=aRegion) return;

 //Check if this particular volume has a material matched to the couple

 if(aLV->GetMaterial()==aCouple->GetMaterial()) {

 aLV->SetMaterialCutsCouple(aCouple);

 }

 size_t noDaughters = aLV->GetNoDaughters();

 if(noDaughters==0) return;

 //Loop over daughters with same region

 for(size_t i=0;i<noDaughters;i++){

 G4LogicalVolume* daughterLVol = aLV->GetDaughter(i)->GetLogicalVolume();

 ScanAndSetCouple(daughterLVol,aCouple,aRegion);

 }

}

Recursive call

 17

Recursive function optimizations

● Eliminating register spilling boosted
performance by 13%
– Register pressure caused by function arguments,

and implicit 64bit <-> 32bit integer casts

● Power consumption remained the same
– Thus energy consumption was also reduced by

13%

 18

Micro-operation cache

Backend execution
ports

Instruction decoding
pipeline

Image copyright © 2013 Intel Corporation

 19

Sources of micro-operations

● Three different sources of micro-operations in
the frontend
– Simple instruction decoders

– Complex instruction decoders
● Micro-operations are stored in the microcode ROM
● Instructions that generate more than 4 µops

– Micro-operation cache
● Complex instructions fill an entire cache line (6 µops)

 20

Instruction decoders events

● IDQ.DSB_UOPS
– Micro-ops delivered from the micro-operation cache

● IDQ.MITE_UOPS
– Micro-ops delivered from the simple decoders

● IDQ.MS_UOPS
– Micro-ops delivered from the complex decoder (microsequencer)

● Typical distribution is 80% cached micro-operations, 15%
from simple decoders and 5% from complex decoder

 21

Instruction decoder events
graphically in ParFullCMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

 13

 14

 15

 16

 17

uo
p

s
d

e
liv

e
re

d
 (

p
e

rc
e

nt
a

g
e

)

P
o

w
e

r
(W

)

Time (s)

Simple decoder (percentage)
Complex decoder (percentage)

Socket power

Spike in power consumption correlates with instruction decoder activity

 22

Instruction decoder events
graphically in ParFullCMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 21 22 23 24 25 26 27 28 29 30

 13

 14

 15

 16

 17

uo
p

s
d

e
liv

e
re

d
 (

p
e

rc
e

nt
a

g
e

)

P
o

w
e

r
(W

)

Time (s)

Simple decoder (percentage)
Complex decoder (percentage)

Socket power

The extra 2 watts of power correlates with instruction decoder activity

 23

Conclusion

● Instruction decoder consumes about 2 watts of
power

● This is a power saving opportunity
– Need to increase code locality

● Do as much useful work as possible once code has been
decoded into the µop cache

– Need to optimize for smaller code size
● Avoid using -O3 and -funroll-loops too much

 24

Ideas for further work

● Power modeling
– Currently in progress

● Compiler optimization comparison
● Intel vs ARM hardware comparison

 25

Power modeling

● ParFullCMS power consumption could be modeled
using only two performance counters:
– UOPS_ISSUED.ANY

● This accounts for the work done by the CPU backend

– IDQ.MITE_UOPS
● This accounts for the (simple) instruction decoders

● This simple model fails to predict the power
consumption in the PARSEC benchmark
– Need to include L1 & L2 cache accesses and number of

active cores in the model

 26

Extra slides

 27

Machine code view (first part)

Static branch
prediction hint
is wrong

Branch never taken

Branch always taken

Lots of values
being pushed
onto the stack

Five registers
are restored
before return
from this function

 28

Machine code view (first part)

Code for
aLV->GetMaterial()

%fs is a segmentation
register! It's used for
thread-local storage
on x86-64

Dynamic constant
fetched from
memory

C++ tends to hide implementation details...

 29

Machine code view (second part)

Recursive call

Load value
from stack

Signed 32bit
-> 64bit integer
conversions

 30

Optimization opportunities
void G4ProductionCutsTable::ScanAndSetCouple(G4LogicalVolume* aLV,

 G4MaterialCutsCouple* aCouple,

 G4Region* aRegion)

{

 //Check whether or not this logical volume belongs to the same region

 if((aRegion!=0) && aLV->GetRegion()!=aRegion) return;

 //Check if this particular volume has a material matched to the couple

 if(aLV->GetMaterial()==aCouple->GetMaterial()) {

 aLV->SetMaterialCutsCouple(aCouple);

 }

 size_t noDaughters = aLV->GetNoDaughters();

 if(noDaughters==0) return;

 //Loop over daughters with same region

 for(size_t i=0;i<noDaughters;i++){

 G4LogicalVolume* daughterLVol = aLV->GetDaughter(i)->GetLogicalVolume();

 ScanAndSetCouple(daughterLVol,aCouple,aRegion);

 }

}

Redundant check that should
be done outside recursion

This result should be cached
since it's always the same

This early return is redundant
but compiler already optimizes
it nicely

This is always true
in the benchmark

Getting rid of the recursion

 31

Optimization opportunities
void G4ProductionCutsTable::ScanAndSetCouple(G4LogicalVolume* aLV,

 G4MaterialCutsCouple* aCouple,

 G4Region* aRegion)

{

 //Check whether or not this logical volume belongs to the same region

 if((aRegion!=0) && aLV->GetRegion()!=aRegion) return;

 //Check if this particular volume has a material matched to the couple

 if(aLV->GetMaterial()==aCouple->GetMaterial()) {

 aLV->SetMaterialCutsCouple(aCouple);

 }

 size_t noDaughters = aLV->GetNoDaughters();

 if(noDaughters==0) return;

 //Loop over daughters with same region

 for(size_t i=0;i<noDaughters;i++){

 G4LogicalVolume* daughterLVol = aLV->GetDaughter(i)->GetLogicalVolume();

 ScanAndSetCouple(daughterLVol,aCouple,aRegion);

 }

}

32-bit integer returned, implicit
cast to 64-bit

size_t is unsigned 64-bit integer

GetDaughter takes a 32-bit
integer as the parameter, implicit
cast to 32-bit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

