
Alternative HEP software approaches at an undergraduate institution

Matt Bellis, Siena College/Cornell University
CMS Software R&D Upgrade meeting
6/8/2015

What do we do at Siena?

Undergraduate-only

Joined CMS in 2013 through Cornell (~3 hour drive)
NSF funded

Previously BaBar, Jefferson Lab
Other current projects: CoGeNT (dark matter detection),
Cosmological calculations with GPUs

What do we do at Siena?

My students after graduation:

Grad school

- Medical physics (3)
- Engineering
- Business/sports analytics
- Environmental
- Neutrino physics
- LHCb

Jobs

Electronics lab tech

Current research students: (2 CS, 3 engineering-focus)

Computing languages

Students learn

- Python
- MATLAB
- Maybe R, Java
- No C/C++!

No ROOT

- Little post-Siena use
- No time (even for PyROOT)
- Personal choice to commit to alternatives

My work on CMS

Physics analysis

- Contribute to boosted top $d\sigma/dp_{\tau}$ analysis
- Baryon-number violating top decays

Data preservation

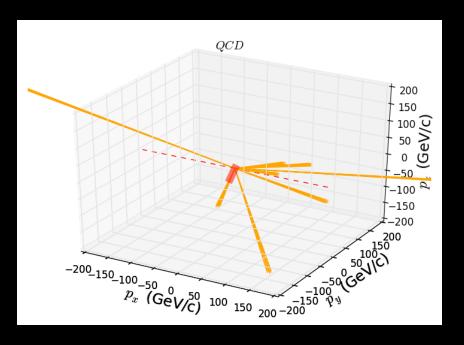
- Learning tools for http://opendata.cern.ch/
- New outreach tools

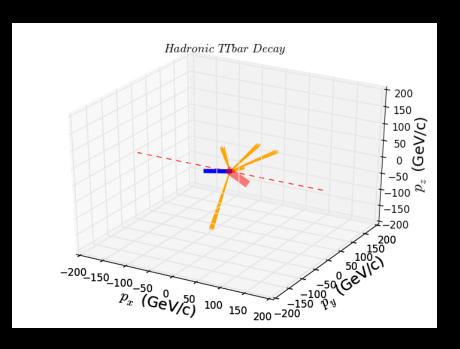
Tools for undergraduates, highschool students, and citizen scientists

CMS Made Simple

Tool for undergrads and outreach efforts

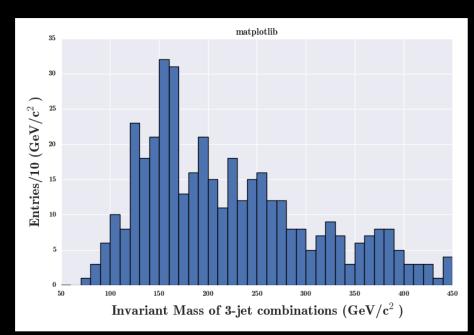
- Data is simplified text (zipped) files
 - 4-vecs + (b-tag, charge, etc)

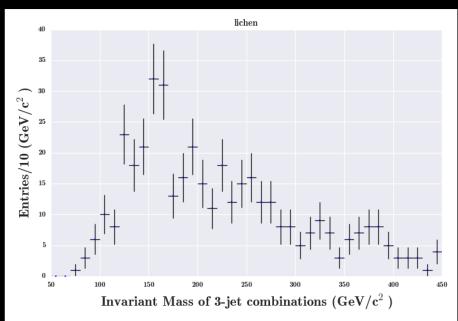

- Python accessors
 - Maintain Python-esque syntax
 - 4-vector viewers
 - Sacrifice speed for readability


https://github.com/mattbellis/CMS-Made-Simple

CMS Made Simple

```
import cms made simple as cms
filename = 'mc ttbar.zip'
collisions = cms.get collisions(filename)
for collision in collisions:
    jets,muons,electrons,photons,met = collision
    for jet in jets:
        energy,px,py,pz,btag = jet
    for muon in muons:
        energy,px,py,pz,charge = muon
```


CMS Made Simple



4-vector viewer

lichen

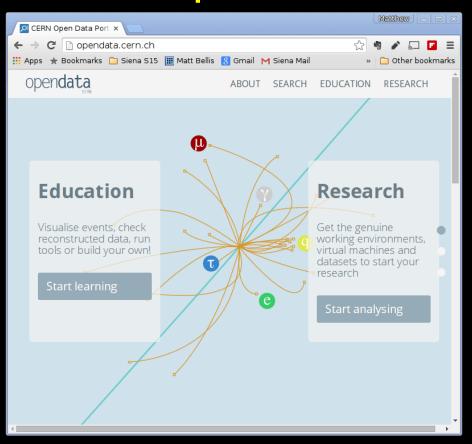
Wrapper to matplotlib.

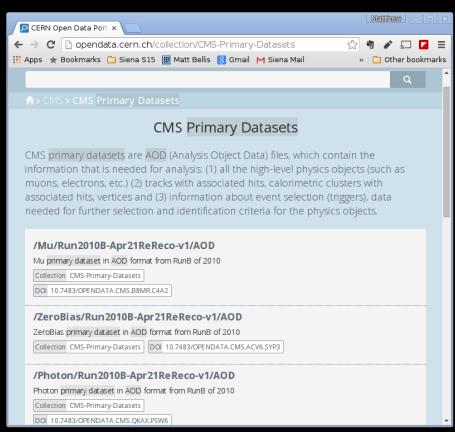
https://github.com/mattbellis/lichen

iminuit

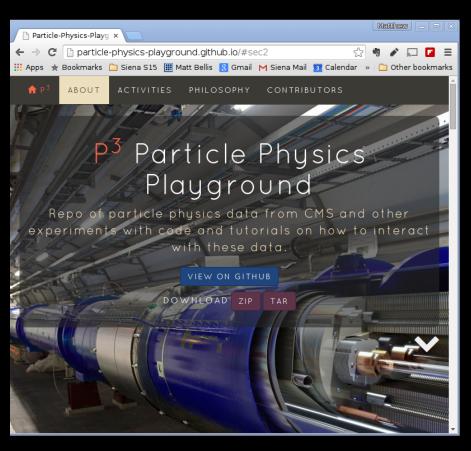
Python wrapper to Minuit

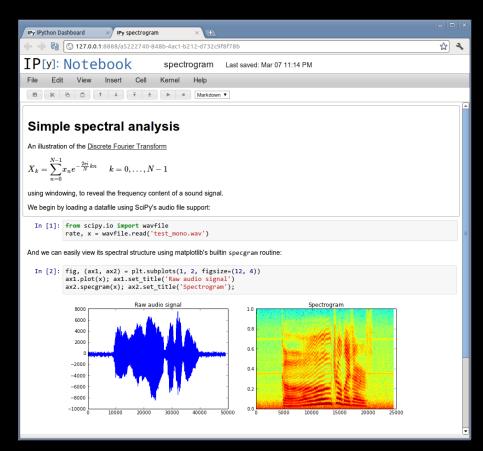
Written by *Piti Ongmongkolkul*

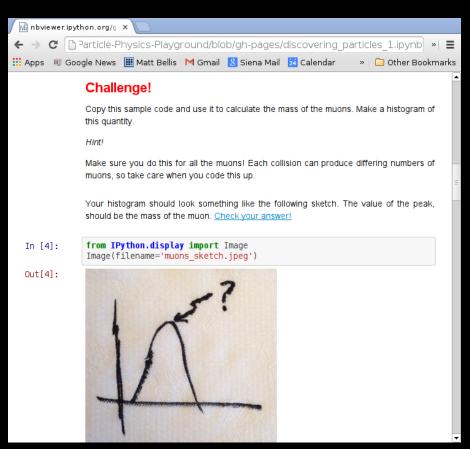

Caltech grad student, BaBar


Most all of Minuit's functionality

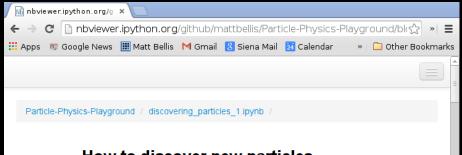
Allows me to teach what is going on under the hood


https://github.com/iminuit/iminuit


CERN Open Data Portal



Particle Physics Playground



Particle Physics Playground


```
No nbviewer.ipython.org/g × \ https://raw.githubusen × No nbviewer.ipython.org/g ×
← → C nbviewer.ipython.org/github/mattbellis/Siena College Amanda Depoia☆ » 🗏
🚟 Apps 👼 Google News 🎹 Matt Bellis M Gmail 🔱 Siena Mail 🔁 Calendar
                                                                       » Dother Bookmarks
               # To find the mass of a muon
                   if len(muons) == 2:
                       energy0,px0,py0,pz0,charge0 = muons[0]
                       energy1,px1,py1,pz1,charge1 = muons[1]
                       masssg = (energy0+energy1)**2 - ((px0+px1)**2 + (py0+py1)**2 +
                (pz0+pz1)**2)
                       if masssq > 0.0:
                           mass.append(np.sqrt(masssq))
               fig = plt.figure()
               plt.hist(mass,bins=200)
               plt.show()
               Reading in the data....
               1000
```

Particle Physics Playground

How to discover new particles

Learning goals

- Relativistic kinematics.
- · Standard model particles.

Background

If you know the mass of a particle, most of the time you know what that particle is. However, there is no way to just build a single detector that gives you the mass. You need to be clever and make use of Special relativity, specifically <u>relativistic kinematics</u>.

To determine the mass (m) of a particle you need to know the 4-momenta of the particles (\mathbf{P}) that are detected after the collision: the energy (E), the momentum in the x direction (p_x), the momentum in the y direction (p_y) , the momentum in the z direction (p_z) .

$$\mathbf{P}=(E,p_x,p_y,p_z)$$
 $m=\sqrt{E^2-(p_x^2+p_y^2+p_z^2)}$

Will soon be adding CLEO data, as well as more CMS data.

Have spoken with ATLAS about contributing

Will reach out to BaBar and LHCb

Let's code!

Python and GPUs

Continuum Analytics

Anaconda distribution

numba.cuda

Wrapper to CUDA libraries

Slower than compiled C/CUDA, but....

Can engage my students with Python

Exploring nearest-neighbor density with multidimensional fits

Comments and inquiries are welcome!

Student poster at GPU Tech Conference 2015

``Undergraduate GPU-enabled Research Through Python"

http://on-demand.gputechconf.

com/gtc/2015/posters/GTC_2015_Education___Training_01_P5236_WEB.pdf

Student poster at April APS meeting

``CMS Made Simple: A ROOT-less Workflow for Educating Undergraduates about CMS Analysis"

https://cms-mgt-conferences.web.cern.ch/cms-mgt-conferences/pres_display.aspx?cid=1550&pid=10635

http://particle-physics-playground.github.io/

https://github.com/mattbellis/SCMS-Made-Simple

https://github.com/mattbellis/lichen

https://github.com/iminuit/iminuit

http://ipython.org/notebook.html

http://docs.continuum.io/numbapro/CUDAJit.html

https://github.com/mattbellis/GTC15-Python-and-CUDA