D)

X/

A Brief Introduction to Key-Value Stores

Jakob Blomer

ALICE Offline Week, CERN
July 1st 2015

1/26

@ A Little Bit on NoSQL, ACID, BASE, and the CAP Theorem

2/26

y Thoughts behind Distributed Key-Value Stores

7% ~2000-2010

L/

[SQL databases do not scale to the needs of large web services

@ Can we scale out a database (“horizontal scaling”)
if we give up on the relational data model?

e Dictionary as a simple, easy to distribute gcalind
yet useful data structure

y Thoughts behind Distributed Key-Value Stores

7

SQL databases do not scale to the needs of large web services

@ Can we scale out a database (“horizontal scaling”)
if we give up on the relational data model?

e Dictionary as a simple, easy to distribute SCa\‘“g

yet useful data structure

@ In the presence of inevitable faults, can we still make progress
(“availability”")?
e Boosted by Amazon Dynamo paper (2SOsP07 caultr

o Idea of “eventual consistency’:
heal data inconsistency once the system recovers from faults
e Even though the interface is simple, the implementation of a
distributed key-value store is highly non-trivial

’Yo\e"““Ce

~2000-2010

https://dl.acm.org/citation.cfm?id=1294281

CAP Theorem

A distributed storage system can have at most two out of three

desirable properties (Brewer '07 | Brewer 12

Partition tolerance
i.e. fault tolerance

Consistency

Available
for updates up-to-date data
at all readers

4/26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

CAP Theorem

A distributed storage system can have at most two out of three

desirable properties (Brewer '07 | Brewer 12

Riak
Cassandra

Consistency

Available
for updates up-to-date data
at all readers

4/26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

CAP Theorem

A distributed storage system can have at most two out of three

desirable properties (Brewer '07 | Brewer 12

Riak
Cassandra

1R
Bas@ally N " 2 Atomicity
available Available Consistency Consistency
Soft state Isolati
Eventually for updates up-to-date data solation
: Durability
consistent at all readers

4/26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

/) CAP Theorem

A distributed storage system can have at most two out of three

desirable properties (Brewer '07 | Brewer 12

Riak
Cassandra

1o
BaS|c.a||y " . 2 Atomicity
available Available Consistency Consistency
Soft state Isolati
Eventually for updates up-to-date data solation
: Durability
consistent at all readers

The tradeoffs between availability and consistency can be granular and subtle
For instance: a disconnected ATM might still allow small withdrawals

4/26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

The NoSQL Movement Explores the CAP Space

MakeSenseBD infochimps
7

Problem

One Size Does Not Fit All

Analytic

Operational
Document

‘Data as a Serv

Graph h SchoonersQL
Tokutek
Continuent
Translattice

ource: http://www.slideshare.net/infochimps/making-sense-of-big-data

10/15/2012 Infochimps Confidential

http://www.slideshare.net/infochimps/making-sense-of-big-data

N Call Me Maybe

—

[The Jepsen Experiments
Series of experiments by Kyle Kingsbury (aka aphyr) to
demonstrate how some real distributed systems behave when the network fails

— https://aphyr.com/tags/Jepsen

HEY | JUST MET YOU
THE NE ORK S LAGGY

Kyle Kingsbury

6/26

https://aphyr.com/tags/Jepsen

y Call Me Maybe (contd.)

7

(Experiment Setup W
Five node server cluster, single client with a series of requests on mutable data
(e. g. increment a counter).

At some point two out of five servers fail. They recover some time later.

y Call Me Maybe (contd.)

7

(Experiment Setup W
Five node server cluster, single client with a series of requests on mutable data
(e. g. increment a counter).

At some point two out of five servers fail. They recover some time later.

(W)e demonstrate Redis losing 56% of writes during a partition.

MongoDB is neither AP nor CP. The defaults can cause significant loss of
acknowledged writes. The strongest consistency offered has bugs which
cause false acknowledgements, and even if they're fixed, doesn't prevent
false failures.

Today, we'll see how last-write-wins in Riak can lead to unbounded data
loss.

Cassandra lightweight transactions are not even close to correct.
Depending on throughput, they may drop anywhere from 1-5% of
acknowledged writes—and this doesn’t even require a network partition to
demonstrate.

y Call Me Maybe (contd.)

7

(Experiment Setup W
Five node server cluster, single client with a series of requests on mutable data
(e. g. increment a counter).

At some point two out of five servers fail. They recover some time later.

Kafka's replication claimed to be CA, but in the presence of a partition,
threw away an arbitrarily large volume of committed writes.

RabbitMQ lost ~35% of acknowledged writes.
Use Zookeeper. It's mature, well-designed, and battle-tested.

I look forward to watching both etcd and Consul evolve.

[Note
All of the tested systems are incredibly useful and developed by very capable
engineers! But we should be aware of the real limitations beyond marketing
claims.

—

y Distributed Key-Value Stores in Practice

7

A distributed key-value store typically
® s provided by a cluster of commodity servers
® scales horizontally: hundreds or thousands of nodes
e s fault-tolerant in some sense

® has a simple dictionary interface:
PUT(<key>, <value>) and GET(<key>);
for small keys and values (<1 MB)
sometimes with extensions such as
atomic operations, transactions, secondary indexes, ...
or higher order data structures such as queue, stack, ...
but no relational algebra, fuzzy queries, triggers/stored procedures

(Examples

Amazon Dynamo (2SOSP07) Riak, Cassandra, HBase, Hyperdex, etcd,
RAMCloud €2TOCS15) ZooKeeper (LUSENIXI0D redis, . ..

- J

There is no standard set of data structures and operations (like with SQL).
Key value stores all differ from each other.

https://dl.acm.org/citation.cfm?id=1294281
https://ramcloud.atlassian.net/wiki/display/RAM/RAMCloud?preview=/6848571/6947168/RAMCloudPaper.pdf
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

@ Three Examples: Riak, ZooKeeper, RAMCloud

10/26

Riak

Riak Brief

Developed by Basho Technologies since ~2008
Apache licensed, with additional commercial options
~80k lines of code, mostly Erlang

Available for many distributions, including OS X
Open implementation of Amazon Dynamo

AP system with some nobs to trade off consistency/availability
fully decentralized

Used by many large companies

11/26

Riak Data Distribution

160-bit integer
keyspace

Divided into fixed
number of evenly-sized
partitions

Partitions are claimed by
nodes in the cluster

Replicas go to the N
partitions following the
key

hash(“conferences/surge”)

Source: lan Plosker / Basho

12/26

y Riak Architecture

Erlang/OTP Runtime

Client APIs HTTP Protocol Buffers
Erlang local client

Request Coordination

consistent hashing handoff gossip
membership node-liveness buckets Riak Core

Worers
storage backend Riak KV

Source: lan Plosker / Basho

13/26

y Riak in Practice

7

Note on Eventual Consistency

e Objects can end up on both sides of a network partition

e On recovery, conflict resolution needs to be handled by the
user/application

@ Addition only of immutable key-value pairs
® Use of a custom merge function
©® Use of Conflict-Free Replicated Data Types (< CRDT'11

—> http://basho.com/posts/technical/distributed-data-types-riak-2-0

p
Performance

e Small scale CMS benchmarks testing Riak for conditions data
— http://cern.ch/go/cw8T

e Throughput (not latency!) should scale nicely with more machines;
remains to be tested

14 /26

http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf
http://basho.com/posts/technical/distributed-data-types-riak-2-0
http://cern.ch/go/cw8T

ZooKeeper Brief

ZooKeeper

Developed by Yahoo (publication in 2010), now Apache project
Apache licensed

~100k — 150k lines of code, mostly Java

Available for many distributions

Distributed consensus system,
all writes need to be acknowledged by a majority of nodes
typical cluster size: 5 nodes

Decent throughput of tens of thousands to hundreds of thousands of
requests per second

Often used in addition to other key-value stores to keep high-level
information
e. g. cluster membership, table placement

15/26

y ZooKeeper API

RPCs

create(path, data, flags)
delete(path, version)
exists(path, watch)
getData(path, watch)
setData(path, data, version)
l‘getChildren(path, watch)

fappl/p_1 lappi/p_2 /lapp1/p_3

Hierarchical key-value store (resembles a file system)

16 /26

N ZooKeeper Benchmarks

Throughput of saturated system

90000 T T T
3 servers
80000 f 5 servers
7 servers -
70000 f 9 servers -
13 servers
2
g 60000
Q
(2]
o 50000
o
2
& 40000
s
& 30000
o
20000
10000 L
0 M M M M

0 20 40 60 80 100
Percentage of read requests

From 2010, GbE, (2 USENIX'10
17 /26

https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

70000

60000

T 50000
Q
Q
]

o 40000
Q
2

S 30000
o
[0}
o

O 20000

10000

0

From 2010, GbE,

ZooKeeper Benchmarks

Time series with failures

Throughput s——

|

©

o @
©), ®
0 50 100 150 200 250
Seconds since start of series

USENIX'10

300

18/26

https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

)

7

RAMCloud

RAMCloud Brief

Developed since 2011 at Stanford University

MIT license

Aims at production grade software (e. g. fully unit-tested)
~100k lines of C++ code

Easy to deploy: compiles on SL6

Highly performance-tuned: low latency at large scale

an order of magnitude smaller latency than other key-value stores
Also: very well understood performance (tail latency, individual
components, . ..)

CP system, linearizable (“exactly once”) semantics is
almost fully implemented

Used, for instance, by ONOS to store the routing information for
software-defined networks

J
19/26

y RAMCloud Data Model

N7
Entities Tables
e Table
e Object (row): Key + Value + Version
e Tablet: partition of a table (block of rows)]
Operations
® recad(tableld, version) — blob, version
® wyrite(tableId, key, value) — version
® delete(tableId, key)
® cwrite(tableId, key, value, version)
— version
conditional write, simplifies concurrency control Key (< 64KB)
L. Version (64b)
® Atomic increment
. . Blob (= 1MB
e Secondary indices (range queries) ()
® Enumerate objects in a table) Source: Qusterhout

20/26

y RAMCloud — System Overview

1000 — 100,000 Application Servers

| Appl. | | Appl. | | Appl. | | Appl. |

High-speed networking:
e 5 ps round-trip
e Full bisection bwidth

"
3
Datacenter : °
Commodity Network Coordinator 2
3
Servers 3
i
Master | |Master| |Master Master 32-256 GB 3
R -— 12}
Backup| |Backup| |Backup Backup per server
1000 - 10,000 Storage Servers
[Key Parameters 1

e All data guaranteed to be in memory, thus up to 1M ops/sec/server
e Extra low latency (InfiniBand): 5ps to read, 15 ps to write

e Reliable, k replicas on disk (buffered log, no disk write during store)

Some publications: (ZTOCSE) (1SOSPL) (URaft'i4) (IHot0s'13) (IFAST1A

21/26

https://ramcloud.atlassian.net/wiki/display/RAM/RAMCloud?preview=/6848571/6947168/RAMCloudPaper.pdf
http://dl.acm.org/citation.cfm?id=2043560
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://dl.acm.org/citation.cfm?id=2490483.2490492
https://www.usenix.org/system/files/conference/fast14/fast14-paper_rumble.pdf

Y RAMCloud’s Fast Crash Recovery

Starting point: RAMcloud keeps a single copy in RAM and k copies on disk

Recovery of 32 GB of memory in 1s to 2s leveraging scale

@ Data backups are scattered over entire cluster in 8 MB segments
= recovery can read with 100 MB/s from hundreds of nodes

@® Data on a server is partitioned
= recovery can write with 1 GB/s to tens of new masters

Dead Recovery
Master ; S Masters

Backups

Source: Ongaro

22 /26

© Blueprint of Twitter's Real-Time Data Analytics Platform

23/26

)

) Twitter Heron

e Twitter Heron replacing Storm as real-time stream data processing

platform for a shared cluster (ZSIGMOB/E)
e Used for real-time active user counts, ads evaluation, ...
e Every job: a topology of data sources and sinks and transformational tasks

Logical Plan,
Physical Plan and
Execution State

Topology
Master

Sync Physical Plan__ N\ Off-the-shelf
components:
ZooKeeper registry,
Mesos scheduler,
Linux containers

Stream H H Stream i
Manager H fll Manager i

CONTAINER CONTAINER
Figure 2. Topology Architecture

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron

24 /26

http://dl.acm.org/citation.cfm?id=2742788
https://blog.twitter.com/2015/flying-faster-with-twitter-heron

y Heron Benchmarks

>, Word count

e Storm === Heron e Storm ==fil== Heron
1400 2500

1200 /i
/ 2000 —
1000 /
800 -/ 1500 /
600 1000
; 500
200 |
&

latency (ms)

million tuples/min

400 /

—
0 - 0
0 100 200 300 400 500 0 100 200 300 400 500
Spout Parallelism Spout Parallelism
Figure 9: Throughput with ack led: Figure 10: End-to-end latency with acknowledgements

25 /26

http://dl.acm.org/citation.cfm?id=2742788

Thank you for your timel

	A Little Bit on NoSQL, ACID, BASE, and the CAP Theorem
	Three Examples: Riak, ZooKeeper, RAMCloud
	Blueprint of Twitter's Real-Time Data Analytics Platform

