
A Brief Introduction to Key-Value Stores

Jakob Blomer

ALICE Offline Week, CERN
July 1st 2015

1 / 26

1 A Little Bit on NoSQL, ACID, BASE, and the CAP Theorem

2 Three Examples: Riak, ZooKeeper, RAMCloud

3 Blueprint of Twitter’s Real-Time Data Analytics Platform

2 / 26

Thoughts behind Distributed Key-Value Stores
∼2000–2010

SQL databases do not scale to the needs of large web services

1 Can we scale out a database (“horizontal scaling”)
if we give up on the relational data model?

∙ Dictionary as a simple, easy to distribute
yet useful data structure

Scaling

3 / 26

Thoughts behind Distributed Key-Value Stores
∼2000–2010

SQL databases do not scale to the needs of large web services

1 Can we scale out a database (“horizontal scaling”)
if we give up on the relational data model?

∙ Dictionary as a simple, easy to distribute
yet useful data structure

2 In the presence of inevitable faults, can we still make progress
(“availability”)?

∙ Boosted by Amazon Dynamo paper SOSP’07

∙ Idea of “eventual consistency”:
heal data inconsistency once the system recovers from faults

∙ Even though the interface is simple, the implementation of a
distributed key-value store is highly non-trivial

Scaling

Fault-T
oleran

ce

3 / 26

https://dl.acm.org/citation.cfm?id=1294281

CAP Theorem

A distributed storage system can have at most two out of three
desirable properties Brewer ’97 Brewer ’12

Partition tolerance

i. e. fault tolerance

Consistency

up-to-date data
at all readers

Available

for updates ?

4 / 26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

CAP Theorem

A distributed storage system can have at most two out of three
desirable properties Brewer ’97 Brewer ’12

Partition tolerance

i. e. fault tolerance

Consistency

up-to-date data
at all readers

Available

for updates ?

Postgres
ZooKeeper
. . .

Riak
Cassandra

. . .

4 / 26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

CAP Theorem

A distributed storage system can have at most two out of three
desirable properties Brewer ’97 Brewer ’12

Partition tolerance

i. e. fault tolerance

Consistency

up-to-date data
at all readers

Available

for updates ?

Postgres
ZooKeeper
. . .

Riak
Cassandra

. . .

BASE1

1Basically
available

Soft state
Eventually

consistent

ACID2

2Atomicity
Consistency
Isolation
Durability

4 / 26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

CAP Theorem

A distributed storage system can have at most two out of three
desirable properties Brewer ’97 Brewer ’12

Partition tolerance

i. e. fault tolerance

Consistency

up-to-date data
at all readers

Available

for updates ?

Postgres
ZooKeeper
. . .

Riak
Cassandra

. . .

BASE1

1Basically
available

Soft state
Eventually

consistent

ACID2

2Atomicity
Consistency
Isolation
Durability

The tradeoffs between availability and consistency can be granular and subtle
For instance: a disconnected ATM might still allow small withdrawals

4 / 26

http://dl.acm.org/citation.cfm?id=266662
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6133253&tag=1

The NoSQL Movement Explores the CAP Space

S
ou

rc
e:

ht
tp

:/
/w

ww
.s

li
de

sh
ar

e.
ne

t/
in

fo
ch

im
ps

/m
ak

in
g-

se
ns

e-
of

-
bi

g-
da

ta

5 / 26

http://www.slideshare.net/infochimps/making-sense-of-big-data

Call Me Maybe

The Jepsen Experiments
Series of experiments by Kyle Kingsbury (aka aphyr) to
“demonstrate how some real distributed systems behave when the network fails”

→ https://aphyr.com/tags/Jepsen

K
yl

e
K

in
gs

bu
ry

6 / 26

https://aphyr.com/tags/Jepsen

Call Me Maybe (contd.)

Experiment Setup
Five node server cluster, single client with a series of requests on mutable data
(e. g. increment a counter).
At some point two out of five servers fail. They recover some time later.

(W)e demonstrate Redis losing 56% of writes during a partition.

MongoDB is neither AP nor CP. The defaults can cause significant loss of
acknowledged writes. The strongest consistency offered has bugs which
cause false acknowledgements, and even if they’re fixed, doesn’t prevent
false failures.

Today, we’ll see how last-write-wins in Riak can lead to unbounded data
loss.

Cassandra lightweight transactions are not even close to correct.
Depending on throughput, they may drop anywhere from 1-5% of
acknowledged writes—and this doesn’t even require a network partition to
demonstrate.

7 / 26

Call Me Maybe (contd.)

Experiment Setup
Five node server cluster, single client with a series of requests on mutable data
(e. g. increment a counter).
At some point two out of five servers fail. They recover some time later.

(W)e demonstrate Redis losing 56% of writes during a partition.

MongoDB is neither AP nor CP. The defaults can cause significant loss of
acknowledged writes. The strongest consistency offered has bugs which
cause false acknowledgements, and even if they’re fixed, doesn’t prevent
false failures.

Today, we’ll see how last-write-wins in Riak can lead to unbounded data
loss.

Cassandra lightweight transactions are not even close to correct.
Depending on throughput, they may drop anywhere from 1-5% of
acknowledged writes—and this doesn’t even require a network partition to
demonstrate.

7 / 26

Call Me Maybe (contd.)

Experiment Setup
Five node server cluster, single client with a series of requests on mutable data
(e. g. increment a counter).
At some point two out of five servers fail. They recover some time later.

Kafka’s replication claimed to be CA, but in the presence of a partition,
threw away an arbitrarily large volume of committed writes.

RabbitMQ lost ∼35% of acknowledged writes.

Use Zookeeper. It’s mature, well-designed, and battle-tested.

I look forward to watching both etcd and Consul evolve.

Note
All of the tested systems are incredibly useful and developed by very capable
engineers! But we should be aware of the real limitations beyond marketing
claims.

8 / 26

Distributed Key-Value Stores in Practice
A distributed key-value store typically

∙ is provided by a cluster of commodity servers

∙ scales horizontally: hundreds or thousands of nodes

∙ is fault-tolerant in some sense

∙ has a simple dictionary interface:
PUT(<key>, <value>) and GET(<key>);

for small keys and values (<1 MB)
sometimes with extensions such as
atomic operations, transactions, secondary indexes, . . .
or higher order data structures such as queue, stack, . . .
but no relational algebra, fuzzy queries, triggers/stored procedures

Examples
Amazon Dynamo SOSP’07 , Riak, Cassandra, HBase, Hyperdex, etcd,
RAMCloud TOCS’15 , ZooKeeper USENIX’10 , redis, . . .

There is no standard set of data structures and operations (like with SQL).
Key value stores all differ from each other.

9 / 26

https://dl.acm.org/citation.cfm?id=1294281
https://ramcloud.atlassian.net/wiki/display/RAM/RAMCloud?preview=/6848571/6947168/RAMCloudPaper.pdf
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

1 A Little Bit on NoSQL, ACID, BASE, and the CAP Theorem

2 Three Examples: Riak, ZooKeeper, RAMCloud

3 Blueprint of Twitter’s Real-Time Data Analytics Platform

10 / 26

Riak

Riak Brief
∙ Developed by Basho Technologies since ∼2008

∙ Apache licensed, with additional commercial options

∙ ≈80 k lines of code, mostly Erlang

∙ Available for many distributions, including OS X

∙ Open implementation of Amazon Dynamo

∙ AP system with some nobs to trade off consistency/availability
fully decentralized

∙ Used by many large companies

11 / 26

Riak Data DistributionTHE RING

• 160-bit integer
keyspace

• Divided into fixed
number of evenly-sized
partitions

• Partitions are claimed by
nodes in the cluster

• Replicas go to the N
partitions following the
key

node 0

node 1

node 2

node 3

hash(“conferences/surge”)

N=3

Thursday, 6 September 12 Source: Ian Plosker / Basho

12 / 26

Riak Architecture
RIAK ARCHITECTURE

Erlang/OTP Runtime

Riak KV

Client APIs

Request Coordination

Riak Core

get put delete map-reduce

HTTP Protocol Buffers

Erlang local client

membership
consistent hashing handoff

node-liveness
gossip

buckets

vnodes

storage backend

Workers

vnode master

Thursday, 6 September 12
Source: Ian Plosker / Basho

13 / 26

Riak in Practice

Note on Eventual Consistency

∙ Objects can end up on both sides of a network partition

∙ On recovery, conflict resolution needs to be handled by the
user/application

1 Addition only of immutable key-value pairs
2 Use of a custom merge function
3 Use of Conflict-Free Replicated Data Types CRDT’11

→ http://basho.com/posts/technical/distributed-data-types-riak-2-0

Performance
∙ Small scale CMS benchmarks testing Riak for conditions data

→ http://cern.ch/go/cw8T

∙ Throughput (not latency!) should scale nicely with more machines;
remains to be tested

14 / 26

http://hal.upmc.fr/file/index/docid/555588/filename/techreport.pdf
http://basho.com/posts/technical/distributed-data-types-riak-2-0
http://cern.ch/go/cw8T

ZooKeeper

ZooKeeper Brief

∙ Developed by Yahoo (publication in 2010), now Apache project

∙ Apache licensed

∙ ≈100 k – 150 k lines of code, mostly Java

∙ Available for many distributions

∙ Distributed consensus system,
all writes need to be acknowledged by a majority of nodes
typical cluster size: 5 nodes

∙ Decent throughput of tens of thousands to hundreds of thousands of
requests per second

∙ Often used in addition to other key-value stores to keep high-level
information
e. g. cluster membership, table placement

15 / 26

ZooKeeper APIgiven znode, we use the standard UNIX notation for file
system paths. For example, we use /A/B/C to denote
the path to znode C, where C has B as its parent and B
has A as its parent. All znodes store data, and all znodes,
except for ephemeral znodes, can have children.

/

/app1 /app2

/app1/p_1 /app1/p_2 /app1/p_3

Figure 1: Illustration of ZooKeeper hierarchical name
space.

There are two types of znodes that a client can create:
Regular: Clients manipulate regular znodes by creating

and deleting them explicitly;
Ephemeral: Clients create such znodes, and they ei-

ther delete them explicitly, or let the system remove
them automatically when the session that creates
them terminates (deliberately or due to a failure).

Additionally, when creating a new znode, a client can
set a sequential flag. Nodes created with the sequen-
tial flag set have the value of a monotonically increas-
ing counter appended to its name. If n is the new znode
and p is the parent znode, then the sequence value of n
is never smaller than the value in the name of any other
sequential znode ever created under p.

ZooKeeper implements watches to allow clients to
receive timely notifications of changes without requir-
ing polling. When a client issues a read operation
with a watch flag set, the operation completes as nor-
mal except that the server promises to notify the client
when the information returned has changed. Watches
are one-time triggers associated with a session; they
are unregistered once triggered or the session closes.
Watches indicate that a change has happened, but do
not provide the change. For example, if a client is-
sues a getData(‘‘/foo’’, true) before “/foo”
is changed twice, the client will get one watch event
telling the client that data for “/foo” has changed. Ses-
sion events, such as connection loss events, are also sent
to watch callbacks so that clients know that watch events
may be delayed.

Data model. The data model of ZooKeeper is essen-
tially a file system with a simplified API and only full
data reads and writes, or a key/value table with hierar-

chical keys. The hierarchal namespace is useful for al-
locating subtrees for the namespace of different applica-
tions and for setting access rights to those subtrees. We
also exploit the concept of directories on the client side to
build higher level primitives as we will see in section 2.4.

Unlike files in file systems, znodes are not designed
for general data storage. Instead, znodes map to abstrac-
tions of the client application, typically corresponding
to meta-data used for coordination purposes. To illus-
trate, in Figure 1 we have two subtrees, one for Applica-
tion 1 (/app1) and another for Application 2 (/app2).
The subtree for Application 1 implements a simple group
membership protocol: each client process pi creates a
znode p i under /app1, which persists as long as the
process is running.

Although znodes have not been designed for general
data storage, ZooKeeper does allow clients to store some
information that can be used for meta-data or configu-
ration in a distributed computation. For example, in a
leader-based application, it is useful for an application
server that is just starting to learn which other server is
currently the leader. To accomplish this goal, we can
have the current leader write this information in a known
location in the znode space. Znodes also have associated
meta-data with time stamps and version counters, which
allow clients to track changes to znodes and execute con-
ditional updates based on the version of the znode.

Sessions. A client connects to ZooKeeper and initiates
a session. Sessions have an associated timeout. Zoo-
Keeper considers a client faulty if it does not receive any-
thing from its session for more than that timeout. A ses-
sion ends when clients explicitly close a session handle
or ZooKeeper detects that a clients is faulty. Within a ses-
sion, a client observes a succession of state changes that
reflect the execution of its operations. Sessions enable a
client to move transparently from one server to another
within a ZooKeeper ensemble, and hence persist across
ZooKeeper servers.

2.2 Client API
We present below a relevant subset of the ZooKeeper
API, and discuss the semantics of each request.
create(path, data, flags): Creates a znode

with path name path, stores data[] in it, and
returns the name of the new znode. flags en-
ables a client to select the type of znode: regular,
ephemeral, and set the sequential flag;

delete(path, version): Deletes the znode
path if that znode is at the expected version;

exists(path, watch): Returns true if the znode
with path name path exists, and returns false oth-
erwise. The watch flag enables a client to set a

3

RPCs
create(path, data, flags)
delete(path, version)
exists(path, watch)
getData(path, watch)
setData(path, data, version)
getChildren(path, watch)

Hierarchical key-value store (resembles a file system)

16 / 26

ZooKeeper Benchmarks

server does not reestablish the session with the client un-
til the server has caught up. The client is guaranteed to
be able to find another server that has a recent view of the
system since the client only sees changes that have been
replicated to a majority of the ZooKeeper servers. This
behavior is important to guarantee durability.

To detect client session failures, ZooKeeper uses time-
outs. The leader determines that there has been a failure
if no other server receives anything from a client ses-
sion within the session timeout. If the client sends re-
quests frequently enough, then there is no need to send
any other message. Otherwise, the client sends heartbeat
messages during periods of low activity. If the client
cannot communicate with a server to send a request or
heartbeat, it connects to a different ZooKeeper server to
re-establish its session. To prevent the session from tim-
ing out, the ZooKeeper client library sends a heartbeat
after the session has been idle for s/3 ms and switch to a
new server if it has not heard from a server for 2s/3 ms,
where s is the session timeout in milliseconds.

5 Evaluation

We performed all of our evaluation on a cluster of 50
servers. Each server has one Xeon dual-core 2.1GHz
processor, 4GB of RAM, gigabit ethernet, and two SATA
hard drives. We split the following discussion into two
parts: throughput and latency of requests.

5.1 Throughput

To evaluate our system, we benchmark throughput when
the system is saturated and the changes in throughput
for various injected failures. We varied the number of
servers that make up the ZooKeeper service, but always
kept the number of clients the same. To simulate a large
number of clients, we used 35 machines to simulate 250
simultaneous clients.

We have a Java implementation of the ZooKeeper
server, and both Java and C clients2. For these experi-
ments, we used the Java server configured to log to one
dedicated disk and take snapshots on another. Our bench-
mark client uses the asynchronous Java client API, and
each client has at least 100 requests outstanding. Each
request consists of a read or write of 1K of data. We
do not show benchmarks for other operations since the
performance of all the operations that modify state are
approximately the same, and the performance of non-
state modifying operations, excluding sync, are approx-
imately the same. (The performance of sync approxi-
mates that of a light-weight write, since the request must

2The implementation is publicly available at http://hadoop.
apache.org/zookeeper.

go to the leader, but does not get broadcast.) Clients
send counts of the number of completed operations ev-
ery 300ms and we sample every 6s. To prevent memory
overflows, servers throttle the number of concurrent re-
quests in the system. ZooKeeper uses request throttling
to keep servers from being overwhelmed. For these ex-
periments, we configured the ZooKeeper servers to have
a maximum of 2, 000 total requests in process.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Percentage of read requests

Throughput of saturated system

3 servers
5 servers
7 servers
9 servers

13 servers

Figure 5: The throughput performance of a saturated sys-
tem as the ratio of reads to writes vary.

Servers 100% Reads 0% Reads
13 460k 8k
9 296k 12k
7 257k 14k
5 165k 18k
3 87k 21k

Table 1: The throughput performance of the extremes of
a saturated system.

In Figure 5, we show throughput as we vary the ratio
of read to write requests, and each curve corresponds to
a different number of servers providing the ZooKeeper
service. Table 1 shows the numbers at the extremes of
the read loads. Read throughput is higher than write
throughput because reads do not use atomic broadcast.
The graph also shows that the number of servers also has
a negative impact on the performance of the broadcast
protocol. From these graphs, we observe that the number
of servers in the system does not only impact the num-
ber of failures that the service can handle, but also the
workload the service can handle. Note that the curve for
three servers crosses the others around 60%. This situ-
ation is not exclusive of the three-server configuration,
and happens for all configurations due to the parallelism
local reads enable. It is not observable for other config-
urations in the figure, however, because we have capped
the maximum y-axis throughput for readability.

There are two reasons for write requests taking longer
than read requests. First, write requests must go through
atomic broadcast, which requires some extra processing

10

From 2010, GbE, USENIX’10

17 / 26

https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

ZooKeeper Benchmarks

and adds latency to requests. The other reason for longer
processing of write requests is that servers must ensure
that transactions are logged to non-volatile store before
sending acknowledgments back to the leader. In prin-
ciple, this requirement is excessive, but for our produc-
tion systems we trade performance for reliability since
ZooKeeper constitutes application ground truth. We use
more servers to tolerate more faults. We increase write
throughput by partitioning the ZooKeeper data into mul-
tiple ZooKeeper ensembles. This performance trade off
between replication and partitioning has been previously
observed by Gray et al. [12].

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100

O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Percentage of read requests

Throughput of saturated system (all requests to leader)

3 servers

5 servers

7 servers

9 servers

13 servers

Figure 6: Throughput of a saturated system, varying the
ratio of reads to writes when all clients connect to the
leader.

ZooKeeper is able to achieve such high throughput by
distributing load across the servers that makeup the ser-
vice. We can distribute the load because of our relaxed
consistency guarantees. Chubby clients instead direct all
requests to the leader. Figure 6 shows what happens if
we do not take advantage of this relaxation and forced
the clients to only connect to the leader. As expected the
throughput is much lower for read-dominant workloads,
but even for write-dominant workloads the throughput is
lower. The extra CPU and network load caused by ser-
vicing clients impacts the ability of the leader to coor-
dinate the broadcast of the proposals, which in turn ad-
versely impacts the overall write performance.

The atomic broadcast protocol does most of the work
of the system and thus limits the performance of Zoo-
Keeper more than any other component. Figure 7 shows
the throughput of the atomic broadcast component. To
benchmark its performance we simulate clients by gen-
erating the transactions directly at the leader, so there is
no client connections or client requests and replies. At
maximum throughput the atomic broadcast component
becomes CPU bound. In theory the performance of Fig-
ure 7 would match the performance of ZooKeeper with
100% writes. However, the ZooKeeper client commu-
nication, ACL checks, and request to transaction con-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 4 6 8 10 12 14

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

Size of ensemble

Atomic Broadcast Throughput

Figure 7: Average throughput of the atomic broadcast
component in isolation. Error bars denote the minimum
and maximum values.

versions all require CPU. The contention for CPU low-
ers ZooKeeper throughput to substantially less than the
atomic broadcast component in isolation. Because Zoo-
Keeper is a critical production component, up to now our
development focus for ZooKeeper has been correctness
and robustness. There are plenty of opportunities for im-
proving performance significantly by eliminating things
like extra copies, multiple serializations of the same ob-
ject, more efficient internal data structures, etc.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300

d
n

o
c

e
s r

e
p

s
n

oit
ar

e
p

O

Seconds since start of series

Time series with failures

Throughput

Figure 8: Throughput upon failures.

To show the behavior of the system over time as fail-
ures are injected we ran a ZooKeeper service made up
of 5 machines. We ran the same saturation benchmark
as before, but this time we kept the write percentage at
a constant 30%, which is a conservative ratio of our ex-
pected workloads. Periodically we killed some of the
server processes. Figure 8 shows the system throughput
as it changes over time. The events marked in the figure
are the following:

1. Failure and recovery of a follower;
2. Failure and recovery of a different follower;
3. Failure of the leader;
4. Failure of two followers (a, b) in the first two marks,

and recovery at the third mark (c);
5. Failure of the leader.

11

From 2010, GbE, USENIX’10

18 / 26

https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

RAMCloud

RAMCloud Brief
∙ Developed since 2011 at Stanford University

∙ MIT license

∙ Aims at production grade software (e. g. fully unit-tested)

∙ ≈100 k lines of C++ code

∙ Easy to deploy: compiles on SL6

∙ Highly performance-tuned: low latency at large scale
an order of magnitude smaller latency than other key-value stores
Also: very well understood performance (tail latency, individual
components, . . .)

∙ CP system, linearizable (“exactly once”) semantics is
almost fully implemented

∙ Used, for instance, by ONOS to store the routing information for
software-defined networks

19 / 26

RAMCloud Data Model

Entities
∙ Table

∙ Object (row): Key + Value + Version

∙ Tablet: partition of a table (block of rows)

Operations

∙ read(tableId, version) → blob, version

∙ write(tableId, key, value) → version

∙ delete(tableId, key)

∙ cwrite(tableId, key, value, version)
→ version
conditional write, simplifies concurrency control

∙ Atomic increment

∙ Secondary indices (range queries)

∙ Enumerate objects in a table

Tables

Data Model: Key-Value Store
● Basic operations:

� read(tableId, key)
 => blob, version

� write(tableId, key, blob)
 => version

� delete(tableId, key)

● Other operations:
� cwrite(tableId, key, blob, version)

 => version
� Enumerate objects in table
� Efficient multi-read, multi-write
� Atomic increment

● Not currently available:
� Atomic updates of multiple objects
� Secondary indexes

 January 21, 2014 RAMCloud 1.0 (SEDCL Forum) Slide 4

Tables

(Only overwrite if
version matches)

Key (≤ 64KB)
Version (64b)

Blob (≤ 1MB)

Object

Source: Ousterhout

20 / 26

RAMCloud – System Overview

Master

Backup

Master

Backup

Master

Backup

Master

Backup
…

Appl.

Library

Appl.

Library

Appl.

Library

Appl.

Library
…

Datacenter
Network Coordinator

1000 – 10,000 Storage Servers

1000 – 100,000 Application Servers

Commodity
Servers

32-256 GB
per server

High-speed networking:
●  5 µs round-trip
●  Full bisection bwidth

S
ou

rc
e:

O
us

te
rh

ou
t

Key Parameters

∙ All data guaranteed to be in memory, thus up to 1M ops/sec/server

∙ Extra low latency (InfiniBand): 5 µs to read, 15 µs to write

∙ Reliable, k replicas on disk (buffered log, no disk write during store)

Some publications: TOCS’15 SOSP’11 Raft’14 HotOS’13 FAST’14

21 / 26

https://ramcloud.atlassian.net/wiki/display/RAM/RAMCloud?preview=/6848571/6947168/RAMCloudPaper.pdf
http://dl.acm.org/citation.cfm?id=2043560
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://dl.acm.org/citation.cfm?id=2490483.2490492
https://www.usenix.org/system/files/conference/fast14/fast14-paper_rumble.pdf

RAMCloud’s Fast Crash Recovery

Starting point: RAMcloud keeps a single copy in RAM and k copies on disk

Recovery of 32GB of memory in 1 s to 2 s leveraging scale

1 Data backups are scattered over entire cluster in 8MB segments
⇒ recovery can read with 100MB/s from hundreds of nodes

2 Data on a server is partitioned
⇒ recovery can write with 1GB/s to tens of new masters

● Divide each master’s data into partitions
� Recover each partition on a separate recovery master
� Partitions based on tables & key ranges, not log segment
� Each backup divides its log data among recovery masters

October 2, 2012 RAMCloud Slide 20

Recovery, Third Try

Recovery
Masters

Backups

Dead
Master

S
ou

rc
e:

O
ng

ar
o

22 / 26

1 A Little Bit on NoSQL, ACID, BASE, and the CAP Theorem

2 Three Examples: Riak, ZooKeeper, RAMCloud

3 Blueprint of Twitter’s Real-Time Data Analytics Platform

23 / 26

Twitter Heron

∙ Twitter Heron replacing Storm as real-time stream data processing
platform for a shared cluster SIGMOD’15

∙ Used for real-time active user counts, ads evaluation, . . .

∙ Every job: a topology of data sources and sinks and transformational tasks

Source: https://blog.twitter.com/2015/flying-faster-with-twitter-heron

Off-the-shelf
components:
ZooKeeper registry,
Mesos scheduler,
Linux containers

24 / 26

http://dl.acm.org/citation.cfm?id=2742788
https://blog.twitter.com/2015/flying-faster-with-twitter-heron

Heron Benchmarks
Word count

 10

for Heron, tuple failures can happen only due to timeouts. We
used 30 seconds as the timeout interval in both cases.

7.3 Word Count Topology
In these set of experiments, we used a simple word count
topology. In this topology, the spout tasks generate a set of
random words (~175k words) during the initial “open” call, and
during every “nextTuple” call. In each call, each spout simply
picks a word at random and emits it. Hence spouts are extremely
fast, if left unrestricted. Spouts use a fields grouping for their
output, and each spout could send tuples to every other bolt in the
topology.
Bolts maintain an in-memory map, which is keyed by the word
emitted by the spout and updates the count when it receives a
tuple.
This topology is a good measure of the overhead introduced by
either Storm or Heron since it does not do significant work in its
spouts and bolts.
For each set of experiments, we varied the number of Storm
spout/bolt tasks, Heron spout/bolt instances, Storm workers, and
Heron containers as shown below in Table 1.

Table 1: Experimental setup for the Word Count topology

Components Expt. #1 Expt. #2 Expt. #3 Expt. #4
Spout 25 100 200 500
Bolt 25 100 200 500
Heron containers 25 100 200 500
Storm workers 25 100 200 500

7.3.1 Acknowledgements Enabled
In these experiments, the word count topology is enabled to
receive acknowledgements. We measured the topology
throughput, end-to-end latency, and CPU usage, and plot these
results in Figure 9, Figure 10, and Figure 11 respectively. Each of
these figures has four points on each line, corresponding to the
four experimental setup configurations that are shown in Table 1.
As shown in Figure 9, the topology throughput increases linearly
for both Storm and Heron. However, for Heron, the throughput is
10-14X higher than that for Storm in all these experiments.

The end-to-end latency graph, plotted in Figure 10, shows that the
latency increases far more gradually for Heron than it does for
Storm. Heron latency is 5-15X lower than that of the Storm. There
are many bottlenecks in Storm, as the tuples have to travel
through multiple threads inside the worker and pass through
multiple queues. (See Section 3.)
In Heron, there are several buffers that a tuple has to pass through
as they are transported from one Heron Instance to another (via
the SMs). Each buffer adds some latency since tuples are
transported in batches. In normal cases, this latency is
approximately 20ms, and one would expect the latency to be of
the same value since the tuples in this topology have the same
number of hops. However, in this topology, the latency increases
as the number of containers increase. This increase is a result of
the SMs becoming a bottleneck, as they need to maintain buffers
for each connection to the other SMs, and it takes more time to
consume data from more buffers. The tuples also live in these
buffers for longer time given a constant input rate (only one spout
instance per container).
Figure 11 shows the aggregate CPU resources that are utilized
across the entire cluster that is used for this topology, as reported

Figure 9: Throughput with acknowledgements Figure 10: End-to-end latency with acknowledgements

Figure 11: CPU usage with acknowledgements

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

m
ill

io
n

tu
pl

es
/m

in

Spout Parallelism

����� �����

0

500

1000

1500

2000

2500

0 100 200 300 400 500

la
te

nc
y

(m
s)

Spout Parallelism

����� �����

0

500

1000

1500

2000

2500

0 100 200 300 400 500

co

re
s

Spout Parallelism

����� �����

248

SIGMOD’15

25 / 26

http://dl.acm.org/citation.cfm?id=2742788

Thank you for your time!

26 / 26

	A Little Bit on NoSQL, ACID, BASE, and the CAP Theorem
	Three Examples: Riak, ZooKeeper, RAMCloud
	Blueprint of Twitter's Real-Time Data Analytics Platform

