DPG, DPP & Other News

Predrag Buncic

CERN

Step back

LS1 Objectives: Software Framework

Support data taking and processing

Production

 ◆ Use HLT farm for processing CAF(s) -> CAF on demand

Calibration

- Online calibration
- Improve space point calibration OCDB
- Eliminate TPC specific storage Software Infrastructure
- Migrate SVN to IT
- SVN -> Git
- Savannah->JIRA
- Cleanup obsolete code
- CVMFS for s/w distribution

Improve software quality

Continous integration

• CTest/Cdash
OA site for RCs

- Monitoring
- Reporting

QA driven release process

Separate Analysis package

Faster release cycle

Improve software performance

Simulation

- G3->G3, FLUKA-VMC
- De-calibration for embedding
- Geometry for upgrade

Reconstruction

- Improve digitization (algorithms)
- Clustering (HLT >Offline)
- Tracking (external seeding)
- Use TRD point in track fit

Analysis

- ESD,EOD size
- Flat Data structures
- Format for data preservation
- microAOD

R&D

Parallelization studies
GPU algorithms
Low level vectorization
Optimize memory usage
Study alternative
algorithms

 Create task force to continuously monitor performance and suggests improvements
 Simulate scenarios for

HLT/Offline integration

LS1 Objectives: Distributed Computing

Performance

Improve merging

Reduce time to finish for jobs

Improve analysis efficiency

- Address Lego trains performance
- Better monitoring
- Identify slow jobs, hot files, problematic files and sites

Monitoring

Aggregation of IP Traffic

Correlate Job efficiency w/network traffic

Aggregate ML,QA and Logbook

MonaLisa API

QA and Testing

Continuous testing AliEn releases

Data Management

File access monitoring

Active Data Management

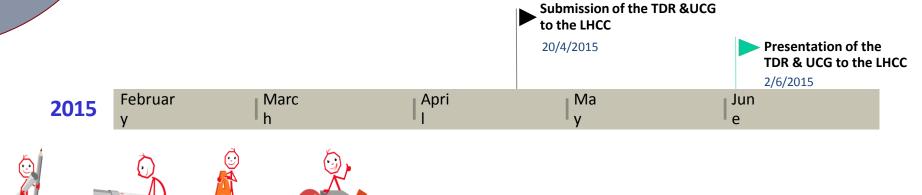
 Transparently move unused files to archive SE

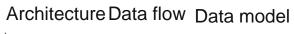
Reduce size file catalog

• Remove GUIDs

Consolidation

jAliEn


 Minimize dependencies to other software components


Using CVMFS for software distribution

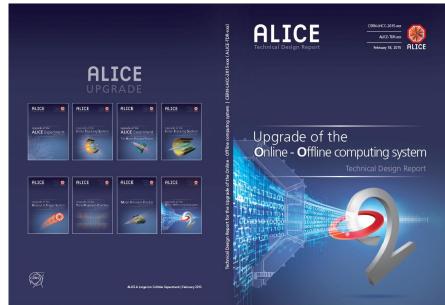
Prepare for Cloud(s)

Offline contribution to O2 TDR

Simulation Calibration Reconstruction **Tools**

DQM

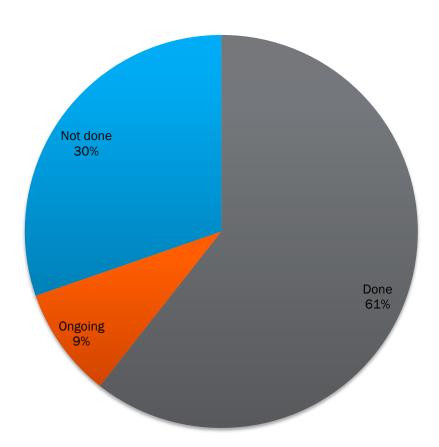
Control Configuration Monitoring


Software Lifecycle

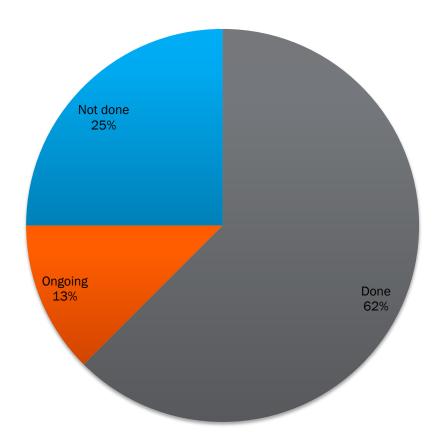
Computing

platforms

Software Framework

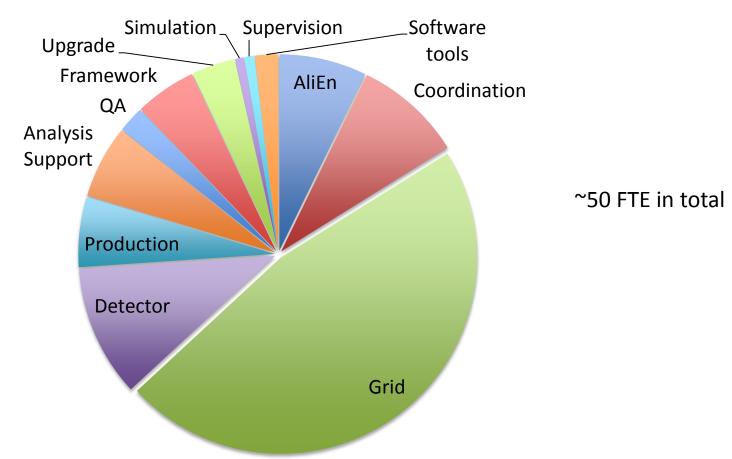


https://cdsweb.cern.ch/record/2011297/


Task completion summary

Software Framework

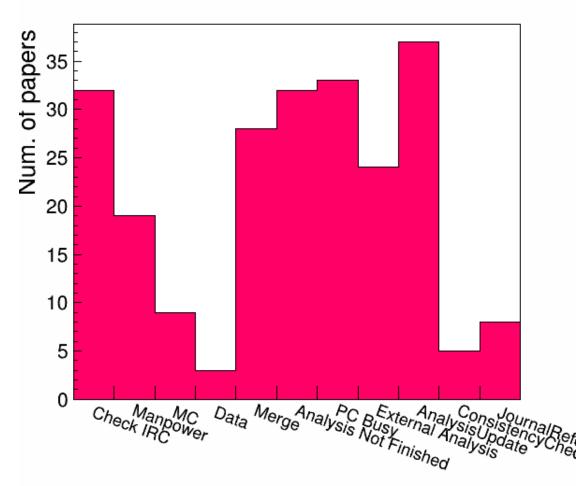
 Focus on functionality and software quality, not working on CPU performance


Distributed Computing

 Focus on operational stability and efficiency, avoiding possibly disruptive developments

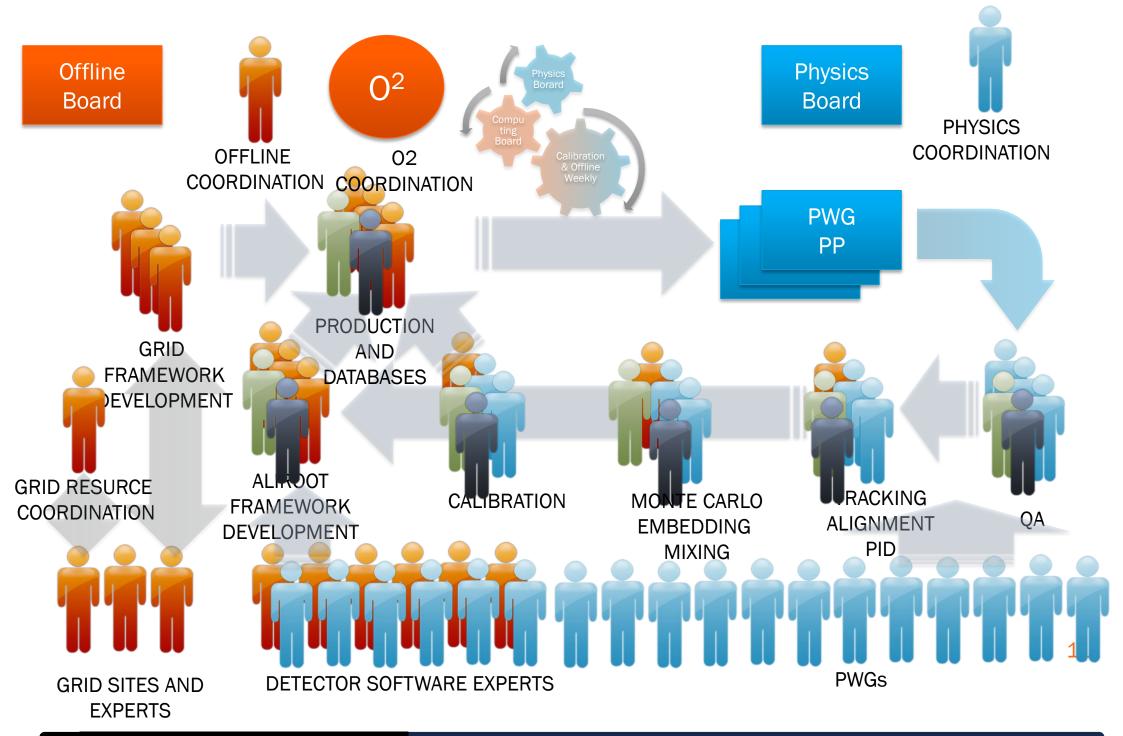
Offline related effort in ALICE

- The biggest effort goes into Grid operations
- Almost no effort is invested in simulation
- Coordination is already consuming the effort comparable to Grid s/w development, framework development or detector software development



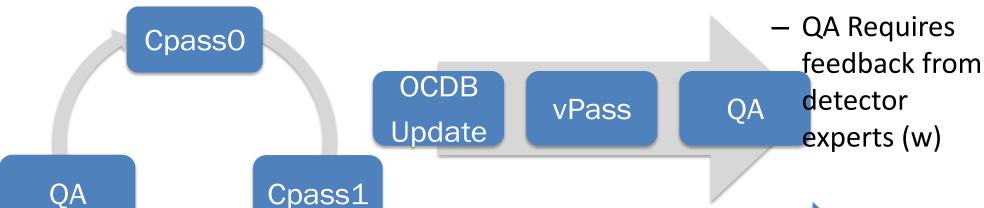
Manpower problems

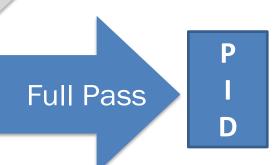
- The perception is that data processing takes too long and is prone to many errors and delays
- Enough FTEs?
 - Enough people in the right place and able to do a job? No.
 - We need more people dedicated to offline activities in detector groups.
- More workers or more managers?
 - If the organization is OK, we need only more people
 - If not, we have to reorganize and/or add more people and more managers
- More experts or many more FTEs?
 - Expert retention and long-term stability remains a big problem
 - The alternative (overlapping short term staff) requires many more FTEs
- We need to do more with less


How to speed things up?

Reasons slowing down papers

- Main reasons slowing down:
- Checks required by IRC
- Analysis not finished at PB paper approval
- Analysis update
- Merging of several analysis
- Missing info from external analysis
- PC busy
 - Problems related to MC/data seem to affect only specific papers


R. Amaldi: Publication Speed Task Force Report



Why data processing takes so long?

 Process designed to maximize good use of computing resources and minimize chances of bad data passed to people doing analysis

- 1-2 days, If everything works as expected
- Previously unseen data taking conditions
 - Require manual calibration
 - May require software update, validation, packaging, deployment, re-run, QA (w,m)

Final PID is attributed at analysis stage (m)

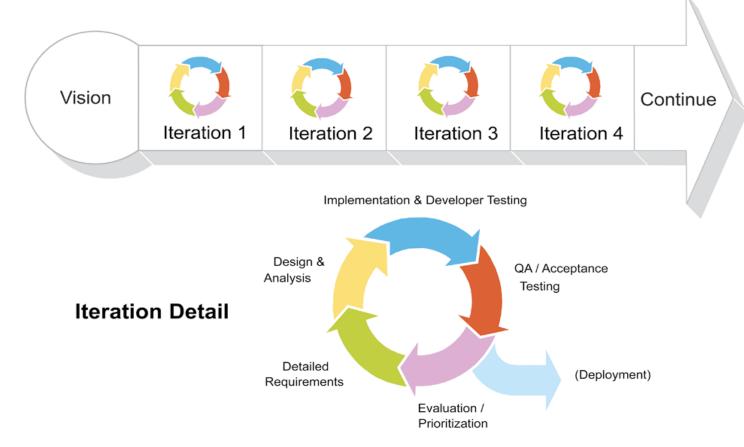
Waterfall approach

Requirements Analysis

Design

Code

Integration


Test

Deploy

- We follow essentially traditional (and obsolete) waterfall model
 - Hoping to get everything right after one full reconstruction pass
- Software build, test, validation process is slow
 - Infrastructure put it place to support software QA not yet used on regular bases

Agile approach

- Trades the traditional phases of "waterfall" development for the ability to develop a subset of high-value features first, incorporating feedback sooner.
 - Incremental product development using one or more, self-organizing teams of about seven people each.
 - Structure of roles (project owner, scrum master, development teams) and meetings
 - Fixed-length iterations (sprints) which never more than 30 days.

Streamlining data processing

Cpass0 Cpass1 OCDB Update PPass QA

- Instead of procedure with several QA checkpoints that currently often resets the process and involves developers, try to run the calibration/reconstruction until end and only then do comprehensive QA
 - Do not stop for 'broken' runs (whatever the reason), recuperate these in subsequent passes, if problems fixed.
 - Only hard stop if reconstruction fails for all
- Define upfront the quality of reconstructed data that need to be achieved after each reconstruction pass and stage/prioritize the analysis activities accordingly
 - In general, this will allow for a fast initial QA and some types of analysis

Streamlining the organization

Grid Operations Grid Software Development

Grid development

Operations
Support

Core Software Development

Grid Site Support

Streamlining the organization

Grid Operations

Grid Software Development

Grid development

Operations
Support

Core Software Development

PWG_PP
Tracking, Calibration, QA,

Simulation

Grid Site Support

- Calibration
- Global Tracking & Alignment
- Simulation
- Analysis framework
- PID

Streamlining the organization

Grid Operations Grid Software Development

Core Software Development

PWG_PP

Tracking, Calibration, QA,
Simulation

Grid Site Support Detector Software Teams

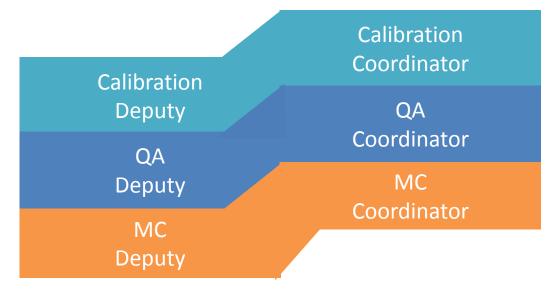
- Calibration
- Reconstruction
- Detector simulation
- QA

Re-organization

- Engage additional manpower from the collaboration and optimize use of the existing manpower by reorganizing the responsibilities between Offline and PWG-PP
- The proposal is to separate development and operations activities in order to
 - Force the experts to document all procedures and allow operations to be run by the non-experts
 - Allow experts to focus on longer term developments
 - Concentrate tracking expertise from relevant detector groups
 - Create a group in charge of data preparation according to agreed upon plan and aiming to achieve desired quality of data after each processing step

Central Barrel Tracking Group

- Evolution of Tracking Task Force
- Combined the effort and expertise from
 - ITS, TPC, TRD, TOF
- Delivers combined (global) tracks and PID
- Responds to calibration and QA requests by DPG
- Includes manpower from all participating detector projects
 + additional manpower from the collaboration
- Barrel Tracking Group has a coordinator and a deputy



Data Preparation Group: Charge

- With Physics Board define the quality that needs to be met by the reconstruction/simulation software in order to perform the required measurements
- With Run Coordination define the usable datasets that need to be reconstructed
- With PWGs define datasets that need to be simulated
- Coordinate and executes the calibration and QA activities that lead to reconstruction
- Coordinate, configure and test the corresponding MC productions
- Define and describe the datasets useful for analysis
- Issue tickets to Offline and detector experts for blocking software issues
- Provide the status reports to Physics Board get the input on priorities
- In cooperation with Offline and Physics Coordination Identifies areas and/or open tasks where the manpower is needed and defines service tasks to cover them

Data Preparation Group

- Operations team (not necessarily the experts and developers themselves)
 - Facilitators, their job is to remove any impediments that obstruct a team's pursuit of its sprint goals
 - 1 year mandate (6 months as deputy + 6 months coordinator) @ 50%
- Reconstruction does not figure explicitly here
 - Preparation work shared between Calibration and QA,
 - Execution carried out by the Offline

Incubation stage

OFFLINE PHYSICS BOARD

Grid Operations

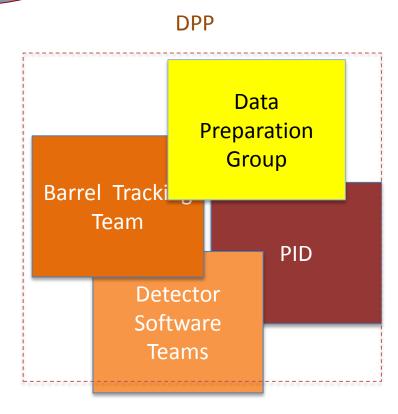
Data
Preparation
Group

Grid Site Support

Operations

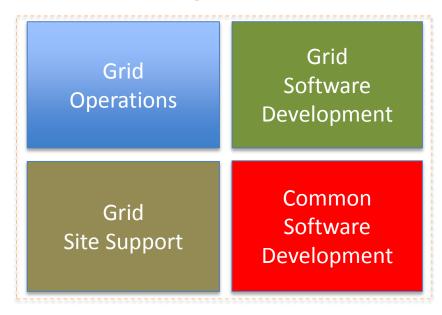
Grid Software Development

Barrel Tracking Team Detector Software Teams


Common Software Development

Development

PWG_PP



Final stage: Data Preparation Project

 Once DPG is established and demonstrates its viability we will proceed with creation of an independent project charged with data preparation and detector software developments

OFFLINE

PHYSICS BOARD

PWG_PP

Offline Role:

 The Offline will focus on Computing aspects (Grid) and common software development (frameworks) as well as its contribution to O2 project

Possible pitfalls

- For this plan to work, the detector groups must find sufficient and qualified resources to fulfill their obligation
 - Detector simulation
 - Calibration
 - Reconstruction
 - QA
- At least in the Grid operations/development there is a large amount of overlap between the operations and development
 - We need to find a way to strengthen that corner
- By dividing the responsibilities between development and operations
 we are risking that part of the collaboration will considers another part
 as "service providers"
 - This is seen very often when a bug is observed and no effort of debugging is done

Conclusions

- Most of the planned software improvements during LS1 were completed
 - 4 of planned tasks cancelled or not successfully completed
- The accumulated delays can be attributed to a general lack of manpower, increased load due to work on O2
- Streamlined data processing proposed for Run 2 using modified QA process and agile development approach
 - Data Preparation Group and Central Barrel Tracking Team to be created within the Offline Project to incubate and prepare the ground for the future Data Preparation Project
 - Data Preparation Project should take the ownership of detector software stack (calibration, reconstruction, PID) and QA process
- The Management Board endorsed this proposal and now we have to start to implement it