New global alignment framework for Alice Barrel

(PWGPP-73)

ALICE Barrel detectors alignment

- Until now barrel detectors were aligned internally (sometimes using some information from other detectors):
- ITS: internal alignment, constraining track curvature to TPC measurement. Based on Millipede implementation in aliroot and global fit track model with average MS accounting (no energy loss)
- TPC, TRD: internal alignment between chambers
- Then detectors were aligned one wrt another with tracks linking them:
- TRD sectors globally aligned wrt TPC, ITS globally wrt TPC
- TOF sectors (no individual strips) aligned wrt extrapolation from TPC/TRD

ALICE Barrel detectors alignment

Consequence of standalone internal then mutual alignment

- Not profiting from best pointing resolution (reduced lever arms, number of points)
- Alignment of one detector is affected by calibration (problems) of this and other detectors
- Reduced link between different regions of the same detector: each well connected region aligned internally, but different "branches" are misaligned wrt each other
\Rightarrow Use global alignment with as many as possible detectors, accounting for their calibrations DOFs if needed

Alice barrel has ~ 27k DOF (alignment only, 6 x number of alignable volumes)
\rightarrow task well suited for Millepede

- Specifically, for 2015 data it was decided to align ITS/TRD/TOF, skipping the TPC to avoid distortions effect.
- Then calibrate TPC distortions used external reference tracks (see Marian's presentation)
- Assumes that for every track the residuals z_{i} wrt every measurement y_{i} with error σ_{i} at point x_{i} can be represented in linearized form as :

$$
z_{i}=y_{i}-f\left(x_{i}, \boldsymbol{q}, \boldsymbol{p}\right)=\sum_{j=1}^{v}\left(\frac{\partial f}{\partial q_{j}}\right) \Delta q_{j}+\sum_{\ell \in \Omega}\left(\frac{\partial f}{\partial p_{\ell}}\right) \Delta p_{\ell} .
$$

where $f\left(x_{i}, q, p\right)$ is track model depending on set of local parameters q (unique for each track) and set of global parameters p (describing detector's DOFs)

- Idea of Millepede is to minimize residuals not only wrt global parameters (alignment+calibration)
but also wrt parameters of each track (reconstructed with misaligned setup)
- The alignment/calibration consists of minimization of global $\chi^{2}=\sum z^{2} / \sigma^{2}$ by simultaneous optimization of p and $q_{i},(i=1$, Ntracks $)$ via solution of large matrix equation (set of different methods):

- Millepede is basically an interface to store user-calculated residuals + derivatives + sophisticated solver (PEDE) for very large systems of linear equations.
- Allows to impose set of exact linear constraints on global parameters (via Lagrange multipliers)
- Provides different options for outliers rejection / downweighting

Track model for Alice Millepede

- Millepede needs derivatives of track position wrt its parameters (e.g. defined at some reference point).
- Kalman track model used in ALICE is not directly applicable to MP since it has no "reference" track parameters and their global covariance matrix per se:
instead it provides set of best estimates for track state and its errors at each measured point, related via transport matrix.
- LHCb managed to adopt Kalman tracks to MP via very convoluted math, based on analytical smoother, but it is also not appropriate for ALICE, since we use rotations when going from one sensor to another, which prevents from describing transport as really linear transformation
- Preferable to use track model as much as possible close to what is used in reconstruction, to minimize systematic effects of model approximations
- \rightarrow Use synthetic track model consisting of usual AliExternalTrackParam defined in the reference point + corrections (again AliExternalTrackParam) for kinks due to the mult.scattering between measurements separated by material

Track model for Alice Millepede

Creating alignment track: initial fit

- Extract measurement for participating detectors from ESDfriends AliTrackPoints (misaligned coordinates in global frame)
- Transform from global frame to volume ideal local frame using alignment matrices used at reconstruction time
- If needed, correct for known problems (e.g. TOF Z...)
- Transform to volume tracking frame using matrices of reference alignment (wrt which we define updated alignment)
- If track has small DCA to vertex and vertex has enough number of tracks, add it as a measured point
- Perform standard Kalman fit from outmost point towards reference point ($\mathrm{X}=0$ or Vertex if used as a constraint), accounting for materials

Track model for Alice Millepede

Creating alignment track: initial fit

- Extract measurement for participating detectors from ESDfriends AliTrackPoints (misaligned coordinates in global frame)
- Transform from global frame to volume ideal local frame using alignment matrices used at reconstruction time
- If needed, correct for known problems (e.g. TOF Z...)
- Transform to volume tracking frame using matrices of reference alignment (wrt which we define updated alignment)
- If track has small DCA to vertex and vertex has enough number of tracks, add it as a measured point
- Perform standard Kalman fit from outmost point towards reference point ($\mathrm{X}=0$ or Vertex if used as a constraint), accounting for materials
- For cosmic track, do the same separately for upper, lower legs (accounting for inverse track direction in material corrections of upper leg and merge them at reference point (Kalman update of lower leg by upper one)

Track model for Alice Millepede

Creating alignment track: accounting for material corrections

- Go outward from one point to another 2 times, starting at each point with cov.matrix ~ 0 :
- applying E-loss and MS contribution to cov.matrix
- w/o correction for materials
- transform obtained parameters and cov.matrices to target point tracking frame

IF accumulated material budget between points ${ }^{x} / x_{0} p_{T}>0.005$ then account

- Difference $\Delta P_{i+1}^{E}=P_{i+1}^{E-l o s s}-P_{i+1}^{0}$ is 5-parameter effective fixed correction for (deterministic) energy loss between to points
- Difference $\Delta \Sigma_{i+1}=\Sigma_{i+1}^{M S}-\Sigma_{i+1}^{0}$ is 4×4 matrix MS for description of effective kink $\Delta P_{i+1}^{M S}$ (5-th row/col discarded)
\rightarrow Track equation
- reference kinematic parameter (5 independent variables) $\boldsymbol{P}_{\boldsymbol{o}}$
- at each point i with material information
- updated for deterministic e-loss $\boldsymbol{\Delta} \boldsymbol{P}_{\boldsymbol{i}}$
- corrected by random 4-parameter kink $\Delta P_{i}^{M S}$, constrained by its cov. matrix $\Delta \Sigma_{i}$ (in general, kink parameters are correlated)

Alice Millepede global alignment framework

Implemented:

- Steering class AliAlgSteer:
- General I/O, manipulations with different geometries
- Assignment of DOFs to detectors

Alice Millepede global alignment framework

- Steering class AliAlgSteer:
- General I/O, manipulations with different geometries
- Assignment of DOFs to detectors
- Detectors (ITS,TPC,TRD,TOF, partially HMPID)
- Detector I/O, geometry description:
- Specific "sensor" volumes
- Specific calibration DOFs can be added by detector experts
- Special "sensor" AliAlgVertex to implement/vary event vertex as a measured point

Alice Millepede global alignment framework

Implemented:

- Conversion of AliTrackPoints from ESDfriends to AliAlgPoint: measurement in the relevant tracking frame + material budget information
- Automatics undoing of alignment/calibration used during reconstruction and application of reference alignment/calibration.
- Alignment track (AliAlgTrack) fit + linearization of derivatives over track parameters (including MS). Two modes: (i)collision tracks, (ii) cosmic tracks made of 2 legs
- Automatic/manual constraints according to detector hierarchy (total movement of child nodes in the parent node frame $=0$)

Alice Millepede global alignment framework

- Automatic/manual constraints according to detector hierarchy (total movement of child nodes in the parent node frame $=0$)
- Control residuals
- Biased (all points contributing, linear eq. solutions, like in PEDE)
- Unbiased (smoothed Kalman residuals, probed point does not contribute to track)

Alice Millepede global alignment framework

Blue: preparation of input data for PEDE II, processing of its output, various utilities for OCDB manipulation

Green: external PEDE II solver (Fortran 90 + OpenMP) supported by DESY

For every track calculate at each measured point:

- Residuals $\Delta Y, \Delta Z$ at reference X (tracking frame) wrt track extrapolation (MS kink parameters set to 0)
- Numerical derivatives $\frac{\partial \Delta Y}{\partial q_{l}}, \frac{\partial \Delta Z}{\partial q_{l}}$ of residuals over all track parameters (reference kinematics + kinks parameters)
- Numerical derivatives $\frac{\partial \Delta Y}{\partial p_{l}}, \frac{\partial \Delta Z}{\partial p_{l}}$ of residuals over detector's volumes alignment corrections + eventual calibration parameters

Millepede works with 1D uncorrelated measurements:

- transform residuals and derivatives pairs by matrix diagonalizing the covariance matrix $\left\{\sigma_{y}^{2}, \sigma_{y z}, \sigma_{z}^{2}\right\}$ of the measurement (rotation by $\sigma_{y z} / \sigma_{z}^{2}$)
- parameters of the MS kink have 0 expectation but are correlated via their cov.matrix $\Delta \Sigma_{i}$ \rightarrow find its eigenvalues and use them as errors of 4 independent pseudo-kink parameters
- Build track record as a set of
- 2 independent residuals, errors + derivatives per measured point
- 4 independent residuals (0), errors and derivatives (local only, $\equiv 1$) per point with material

Problems affecting alignment

- ROOT TGeometry volume positioning/alignment managed by TGeoHMatrix objects
- Each volume i has its Local-to-MARS transition ideal matrix G_{i} which after alignment becomes aligned matrix $\bar{G}_{i}=\Delta_{0} \ldots \Delta_{i} G_{i}$ where Δ_{j} is alignment correction matrix for volume j in global representation, connected with local one δ_{j} as $\Delta_{j} G_{j}=G_{j} \delta_{j}$ The hierarchy of volumes in geometry branch goes from $j=0$ (top node in MARS)
- The alignment framework stores by convention these global correction matrices
- Alignment procedure produces an incremental corrections Υ_{j} for each volume, which must be convoluted with initial alignment as:

$$
\widetilde{\Delta}_{i}=\left[\Delta_{0} \ldots \Delta_{i-1}\right]^{-1} \Upsilon_{i} \Delta_{0} \ldots \Delta_{i}=G_{i-1} \bar{G}_{i-1}^{-1} \Upsilon_{i} G_{i}^{-1} \bar{G}_{i}
$$

- Therefore, in case of 0 incremental correction:

$$
\widetilde{\Delta}_{i} \equiv \Delta_{i} \quad \Rightarrow \quad \widetilde{\Delta}_{i} \Delta_{i}^{-1}-I=0
$$

- Instead, the closure test for $\Sigma=\widetilde{\Delta}_{i} \Delta_{i}^{-1}-I=\left(G_{i-1} \bar{G}_{i-1}^{-1} G_{i}^{-1} \bar{G}_{i}\right) \Delta_{i}^{-1}-I$ shows (case of ITS, particularly bad for SPD due to many rotations by angles far from $k \pi / 2$):

- Reported values X, Y, Z are shifts of residual matrix Σ
- \Rightarrow Matrix inversion/products introduces significant round-off error which limits the precision of TGeometry
- Might be critical for ITS-upgrade if not corrected

- We always observe systematic bias of residuals vs track η for row non-crossing tracklets
- Their Z coordinate in principle does not depend on any calibration.
- Z of tracklet assigned as the center of fired pad Z_{c}, neglecting information that if track with inclination λ produced non-crossing tracklets, then the most
 probable value of Z is shifted: $Z_{M P V} \longrightarrow Z_{c}+1 / 2 h \tan (\lambda)$ (in ideal case of no edge effects)
- This bias is equivalent to (fake) shift in X, which would introduce a bias for row-crossing tracklets
 (potentially more precise but depending on calibrations)
- Due to the tilt of pads in by $2^{\circ} \mathrm{YZ}$, the bias is translated also to Y assignment
- Due to the attempts to align biased data, the chambers get fake shifts and rotations.
- To account for edge effects and disentangle from R shifts (affect differently Y and Z residuals), correct row non-crossing tracklets as:

$$
Z \rightarrow Z+p \tan (\lambda) \quad Y \rightarrow Y \pm p \tan (\lambda) \tan \left(2^{\circ}\right)
$$

- In principle, p can be fitted directly on data, but they might be distorted by previous alignment attempts
\rightarrow instead, p is added as a global parameter of Millepede optimization
 (leading to $p \sim 1.6$ instead of 1.5 in ideal case)
- Measurements by row-crossing tracklets are masked by adding extra error
- Since Y measurement is affected by calibration (particularly $V_{\text {drift }} \times t_{0}$),
 extra global parameter $\Delta V t$ optionally introduced (equivalent to X shift, but acting on Y measurement only)
- For consistency, corrections used in alignment must be implemented also in future reconstruction.

Bug in applying TOF alignment

- TOF clusters use r, φ and Z in lab, frame
- Because the alignment matrix is applied on-the-fly only in calculation of r and φ the Z measurement is never corrected for the misalignment ($\sim 2 \mathrm{~cm}$)
- This should not be critical for TOF matching, since the clusters user only for matching candidate preselection, with large tolerances (to be verified)
\rightarrow TOF trackpoints stored in ESDfriends contain correctly misaligned lab. X, Y but ideal Z!
- To account for this TrackPoints \rightarrow AliAlgPoint converter in the AliAlgSensTOF tries to recover ideal $\{X, Y, Z\}$ in local frame by accounting for wrong transformations
\rightarrow Some distortions are inevitable due to the rotations in existing TOF alignment (should be limited to $\sim 100 \mu \mathrm{~m}$, will below TOF $\sigma \sim 0.7 \mathrm{~cm}$)
- To be fixed in TOF code, with special bit flag set on TrackPoints in ESD friends to signal modified content

Results from LHC15a,c (cosmic) + LHC15f alignment

	B	N.Ev, 10	N.Tracks Inp, 10	N.Tracks Acc., 10
Cosmic	0	126	33	$4.1^{(1)}$
Cosmic	+	53	12	$0.9^{(2)}$
Cosmic	-	28	11	$0.7^{(2)}$
Beam	0	1.6	54	$2.5^{(3)}$
Beam	+	5.0	247	$2.3^{(3)}$
Beam	-	20.	$6.2^{(3)}$	

(1) No obligatory ITS hit requested, TOF and TRD must contribute to each cosmic leg
(2) At least 2 ITS hits + either TRD or TOF must contribute to each cosmic leg
(3) At least 3 ITS hits (min 1 SPD) + either TRD or TOF must contribute to a track

Vertex from reconstruction with old alignment!

- Was used as fixed measured point for new alignment (assuming that errors were cancelled out)
- Attempt to "align" vertex by X,Y,Z shift (field independent) was not successful.
- Systematic DCA dependence on $\varphi, \mathrm{p}_{\mathrm{T}}$ is not yet eliminated
- Currently running test with vertex point downweighed by additional $50 \mu \mathrm{~m}$ error
- Vertex bias also affects alignment at innermost ITS layer

Same observation as for Y, although larger gain in DCA uniformity and resolution

Z in old alignment had larger residual misalignments

Effect of biased constraint by the vertex

B- field results only shown on following slides

SPD1

$<\Delta>$ ITS ΔY Lr2

SDD2

Y measurements is affected by non-calibrated SDD (masked in fits by additional 5 mm error)
$<\Delta>$ ITS ΔY Lr3

$<\Delta>$ ITS ΔY Lr4

$<\Delta>$ ITS $\Delta Z \operatorname{Lr} 4$

SSD5

TRD Layer 0

TRD Layer 5

$<\Delta>$ TRD $\Delta Z \operatorname{Lr} 5$

TOF sector Layer 1

$<\Delta>$ TOF Δ Y SM1

TOF sector Layer 17
$<\Delta>$ TOF Δ Y SM17

Bin-by-bin (sensor-by-sensor) residuals spread

Spread VTX Δ Y vs α

B-

SDD2

Spread ITS $\Delta \mathrm{Y}$ Lr2 Spread ITS ΔZ Lr2

SDD3

spread $<\Delta>Y$ TOF, all sectors
TOF spread $512 z$ Tof.al sectiss
before after

- Millepede alignment
- Try to improve vertex DCA (bias in $\varphi, \mathrm{p}_{\mathrm{T}}$)
- Systematic difference between $\mathrm{B}+, \mathrm{B}$ - and BO is still observed:
- In the current ITS/TRD/TOF alignment schema only TRD may introduce such dependence via run/field dependent calibrations
- Introduce calibration DOF sets for field and run dependent calibration parameters to improve alignment quality (and TRD calibration also)
- Finalize HMPID module
- Many ITS sensors are not in the data (list in the backup)

SPD0: 6/80, SPD1: 10/160,
SDD2: 9/84, SDD3: 21/176,
SSD4: 66/748 SSD5: 80/950
Need additional alignment if reappear in the future data

- For the Run3 upgrade: problems with ROOT TGeoHMatrix precision might be critical for ITS upgrade, fix is needed

Outlook

- Aliroot reconstruction
- TRD Z assignment for pad-row non-crossing tracklets must be fixed
- Ion-tail cancelation in TRD: correction for $\mathrm{B}=0$ is applied as for $\mathrm{B}<0$ field
\rightarrow to be fixed
The corrections themselves
(up to ~ 200 and $\sim 400 \mu \mathrm{~m}$ depending in B sign) to be checked
- TOF clusters should receive proper misalignment
- Once TPC distortion maps are ready, reconstruct high pT filtered data with TRD (TOF?) in the reconstruction, to check the effect on pT resolution, efficiency.

BACKUP

Missing ITS detectors

SPD0:
Sector1/Stave1/HalfStave0 Sector2/Stave0/HalfStave1 Sector2/Stave1/HalfStave1

SPD1:
Sector3/Stave1/HalfStave1 Sector4/Stave0/HalfStave0 Sector5/Stave1/HalfStave0 Sector6/Stave1/Halfstave1 Sector8/Stave1/Halfstave0

SDD2:
Ladder2/Sensor2 Ladder3/Sensor0 Ladder3/Sensor1 Ladder3/Sensor2 Ladder6/Sensor3 Ladder6/Sensor4 Ladder6/Sensor5 Ladder9/Sensor4 Ladder12/Sensor5

SDD3:

Ladder0/Sensor0 Ladder3/Sensor7
Ladder10/Sensor6
Ladder14/Sensor5
Ladder18/Sensor6

Ladder2/Sensor3 Ladder8/Sensor3 Ladder9/Sensor0 Ladder11/Sensor0 Ladder13/Sensor7

Ladder3/Sensor0 Ladder3/Sensor1
Ladder9/Sensor5 Ladder10/Sensor2
Ladder14/Sensor3 Ladder14/Sensor4
Ladder17/Sensor5 Ladder18/Sensor1
Ladder21/Sensor0

SDD4:

Ladder0/Sensor9
Ladder 4 /Sensor14
Ladder8/Sensor12
Ladder8/Sensor17
Ladder14/Sensor8
Ladder14/Sensor16
Ladder14/Sensor21
Ladder15/Sensor15
Ladder15/Sensor20
Ladder23/Sensor7
Ladder29/Sensor11
Ladder32/Sensor13 Ladder32/Sensor18 Ladder33/Sensor12

Ladder1/Sensor5 Ladder2/Sensor3 Ladder2/Sensor10 Ladder4/Sensor19 Ladder8/Sensor13 Ladder8/Sensor18 Ladder14/Sensor12 I Ladder14/Sensor17 I Ladder15/Sensor5 Ladder15/Sensor12 Ladder15/Sensor16 L Ladder15/Sensor21 I Ladder23/Sensor11 Ladder26/Sensor0 Ladder29/Sensor20 Ladder29/Sensor21 I Ladder32/Sensor14 Ladder32/Sensor15 L Ladder32/Sensor19 Ladder32/Sensor20 L

Ladder6/Sensor2
Ladder8/Sensor15
Ladder8/Sensor20
Ladder14/Sensor14
Ladder14/Sensor19
Ladder15/Sensor13
Ladder15/Sensor18
Ladder21/Sensor6
Ladder27/Sensor6 Ladder30/Sensor9 Ladder32/Sensor16 Ladder $32 /$ Sensor21

Ladder2/Sensor19 Ladder6/Sensor15 Ladder8/Sensor16 Ladder8/Sensor21 Ladder14/Sensor15 Ladder14/Sensor20 Ladder15/Sensor14 Ladder15/Sensor19 Ladder21/Sensor10 Ladder29/Sensor1 Ladder32/Sensor12 Ladder32/Sensor17 Ladder33/Sensor2

SSD5:

Ladder0/Sensor12
Ladder4/Sensor1
Ladder 4 /Sensor14 Ladder 4 /Sensor19 Ladder 4 /Sensor24 Ladder8/Sensor11 Ladder13/Sensor0 Ladder13/Sensor5 Ladder13/Sensor10 Ladder16/Sensor0 Ladder17/Sensor4 Ladder17/Sensor9

Ladder20/Sensor14 Ladder22/Sensor8 Ladder22/Sensor16 Ladder24/Sensor4 Ladder32/Sensor0 Ladder33/Sensor6 Ladder33/Sensor20 Ladder33/Sensor24 Ladder34/Sensor0 Ladder36/Sensor10 Ladder36/Sensor11 Ladder37/Sensor20

Ladder1/Sensor9 Ladder1/Sensor22 Ladder4/Sensor9 Ladder4/Sensor12 Ladder4/Sensor16 Ladder4/Sensor17 Ladder4/Sensor21 Ladder5/Sensor21 Ladder9/Sensor22 Ladder13/Sensor2 Ladder13/Sensor7 $\begin{array}{ll}\text { Ladder13/Sensor6 } & \text { Ladder13/Sensor7 } \\ \text { Ladder13/Sensor11 } & \text { Ladder14/Sensor1 }\end{array}$ Ladder17/Sensor0 Ladder17/Sensor1 Ladder17/Sensor5 Ladder17/Sensor6 Ladder17/Sensor10 Ladder17/Sensor11

Ladder1/Sensor0 Ladder4/Sensor6 Ladder 4 /Sensor15 Ladder 4 /Sensor20 Ladder5/Sensor20 Ladder9/Sensor10 Ladder13/Sensor1 (adder36/sensorl1

Ladder4/Sensor22
Ladder8/Sensor0
Ladder11/Sensor13 Ladder13/Sensor3 Ladder13/Sensor8 Ladder14/Sensor7 Ladder17/Sensor2 Ladder17/Sensor7
Ladder17/Sensor12
Ladder22/Sensor18 Ladder22/Sensor22
Ladder33/Sensor7 Ladder33/Sensor18
Ladder34/Sensor5 Ladder34/Sensor7
Ladder37/Sensor21 Ladder37/Sensor23

Ladder17/Sensor22
Ladder2/Sensor10 Ladder 4 /Sensor13 Ladder $4 /$ Sensor18 Ladder 4 /Sensor23 Ladder8/Sensor4 Ladder11/Sensor22 Ladder13/Sensor4 Ladder13/Sensor9 Ladder15/Sensor0 Ladder17/Sensor3 Ladder17/Sensor8

