
Evolving ALICE Build
Infrastructure

Giulio Eulisse & Dario Berzano

Goals
• Provide Continuous Integration (CI) of AliRoot, in an automated

manner.

• Provide feedback about the Continuos Integration process

• Transparently integrate in the current system

• Be "as standard as possible", integrating in CERN/IT
infrastructure for (static) resource provisioning via OpenStack,
without sacrificing the option of being able to use own
hardware, e.g. for Mac builds, larger tests.

• Provide clear information on what sources / recipes have been
used for the official build.

Daily
build

Deployment
on CVMFS

Deployment
on Packman

Right now it simply means building and (unit) testing more often. In the future, if we decide to go to a
GitHub / GitLab development model, it will mean that pull requests (PRs) can be checked before

entering the release.

Continuos process

• Multiplatform: slc5, slc6, ubuntu, centos7, MacosX

• Build (at least) the three major platforms once per
day.

• Build and run test releases as commits arrive
(without waiting for the daily tag) to spot issues early.

• Provide feedback in form of web pages informing
what is going on and root files with the results of the
tests to be downloaded.

Requirements

Jenkins CI Server

Mesos
Slaves

Mesos
Slaves

Mesos
Slaves

Docker containers running on a
Mesos Slaves. No more need

for specially installed
machines (e.g. slc5)

Mesos Master

Industry standard, opensource,
CI web application

We use Mesos cluster
management software,

providing HA, dynamic setup.

Infrastructure

Jenkins CI Server

Mesos
Slaves

Mesos
Slaves

Mesos
Slaves

Mesos Master

Build artifacts (tarballs, test root
files, build logs) get copied to a
temporary artifact storage to be

then propagated to final
deployment destination

(CVMFS, Packman, Monalisa,
summary web pages,

elasticsearch(?)) and eventually
trigger further actions in the

system.

Infrastructure

• Goal: to have each build step / external fully
documented and described in a simple recipe,
including relevant externals.

• Two projects on GitHub:

• the tool itself (https://github.com/alisw/alibuild)

• the recipes (https://github.com/alisw/alidist).

• Maintaining compatibility with the current tar-balls and
deployment infrastructure obviously a requirement.

Driving the builds

https://github.com/alisw/alibuild
https://github.com/alisw/alidist

Features:

• Small, pure python script (~270 SLOCs).

• Simple and understandable build recipes, based on YAML and
bash scripts with documented conventions rather than custom
language or template magic.

• Does not rebuild what is already built, rebuilds packages when
recipe changes, rebuilds dependent packages if dependencies is
rebuilt.

• Sources by default are hosted in a git repository, so that we can
easily keep track of dependencies.

• Support for reusing prebuilt tar-balls in case of no changes will be
added soon.

Build Tool

Example recipe:
package: aliroot
version: master
requires:
 - geant3
source: http://git.cern.ch/pub/AliRoot
tag: master

#!/bin/sh

cmake . -DCMAKE_INSTALL_PREFIX=$INSTALLROOT \
 -DROOTSYS=$ROOT_ROOT \
 -DCMAKE_SKIP_RPATH=TRUE
make ${JOBS+-j $JOBS}
make install

How to use it:
git clone https://github.com/alisw/alibuild
git clone https://github.com/alisw/alidist
alibuild/aliBuild -a osx_x86-64 -j 10 -d build aliroot

Build Recipes

https://github.com/alisw/alibuild

Current status & plan
Build Infrastructure V1:

• Initial setup of Jenkins + Mesos, HA mode (3 availability zones, one can go down
without need for intervention), all running on OpenStack in CERN/IT, configured by
Puppet, including SSO frontend. DONE

• Initial docker containers to build on slc5, ubuntu, slc6, slc7. DONE

• Initial set of recipes and associated tool to build AliRoot and its major externals.
DONE

• Deployment of the end-to-end chain to demonstrate CI of AliRoot, including some
simple tests. IN PROGRESS

• Running the containers on top of real Linux HW and native builds on Mac. TODO

• Aggregation and initial parsing of logs, metrics. TODO

• Adding more tests to the setup and improving result presentation. ONGOING
EFFORT.

