

TPC simulation in Run 3

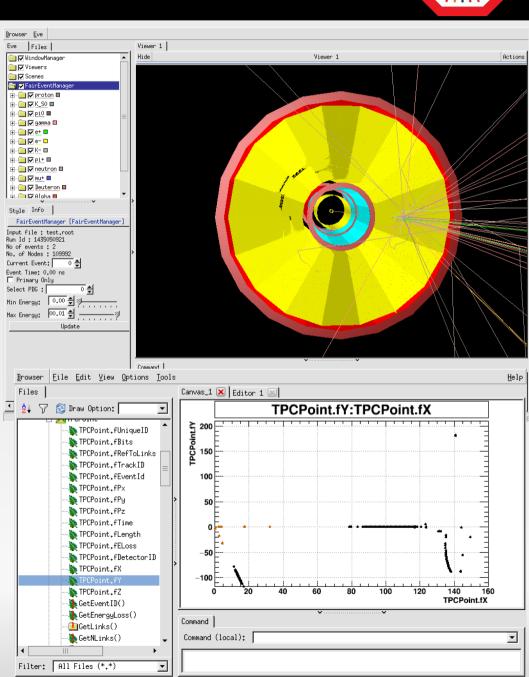
Marian, Kai, Jens

Offline week, July 2015

Outline

- Current status
- A list of questions
- Next steps
- Developments summarised in JIRA mother task: https://alice.its.cern.ch/jira/browse/ATO-157

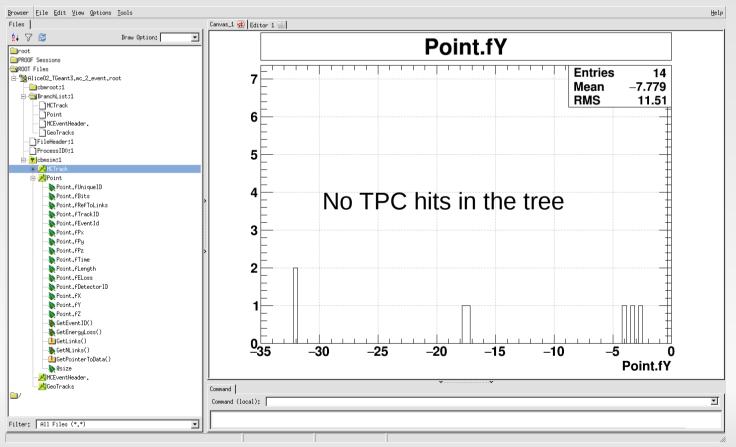
TPC in AliceO²


Basic simulation

- Material + geometry ported
- Hit creation being worked on
 - Simple hit creation implemented
 - Current AliRoot implementation requires many classes from AliRoot
 - → Detector description classes
- Quite some work, especially if new coding conventions should be met

https://alice.its.cern.ch/jira/browse/ATO-157

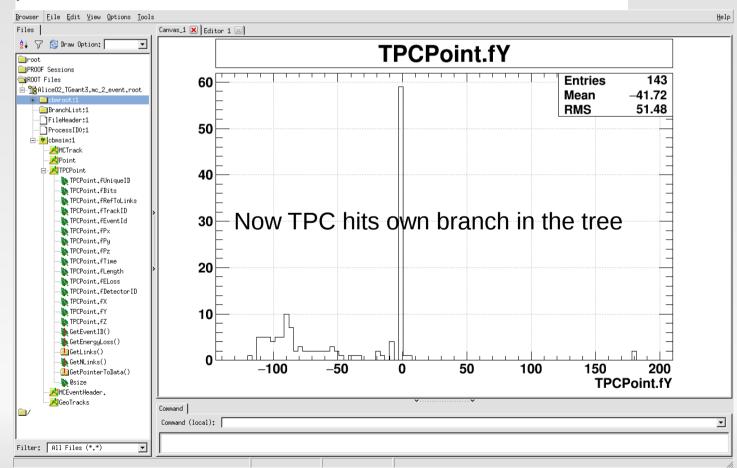
Offline week, July 2015 - TPC simulation run3



Hit creation I


```
void Detector::Register()
{
    /** This will create a branch in the output tree called
    DetectorPoint, setting the last parameter to kFALSE means:
    this collection will not be written to the file, it will exist
    only during the simulation.
    */

FairRootManager::Instance()->Register("Point", "TPC",mPointCollection, kTRUE);
}
```

Hit creation II


```
void Detector::Register()
{
    /** This will create a branch in the output tree called
    DetectorPoint, setting the last parameter to kFALSE means:
    this collection will not be written to the file, it will exist
    only during the simulation.
    */
    FairRootManager::Instance()->Register("TPCPoint", "TPC",mPointCollection, kTRUE);
}
```

Changed to 'TPCPoint'

Simulation

- Simple run macro exists in 'macros' dir
 - Implemented TPC into this one
 - Uses O2 CDB Manager, requires env variable ALICEO2
 - → Better way to do this?

```
// CDB manager
Alice02::CDB::Manager *cdbManager = Alice02::CDB::Manager::Instance();
cdbManager->setDefaultStorage("local://$ALICE02/tpc/dirty/o2cdb");
cdbManager->setRun(0);
```

- Are there more elaborate examples?
 - E.g. Hijing min. bias
 - + high pt pythias tracks
 - Pile-up simulation
- Seeding?

Digitisation

- Is there an example for digitisation
 - In which place should the digitisation be implemented
 - How is digitisation the invoked
 - How to load Hits (SDigits) for pile-up sim
- Is there a concept of summable digits or only digits from hits
 - → How will pile-up simulation be run
 - Hits → SDigits → Build pile up → Digits → Reco
 - Hits → Build pile-up → Digits → Reco
- Is the digit format fixed → will it work with the HLT tracking

Visualisation

- Simple visualisation macro in 'macros'
- More elaborate examples e.g. visualisation of hits?
- Simple geometry for visualisation?

Next steps

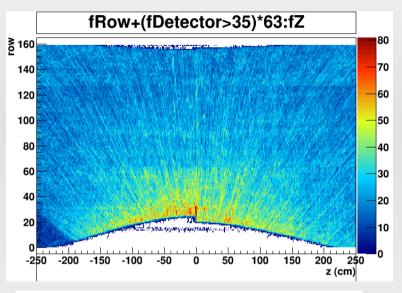
- What is most important for the O² project?
- Clean up code (debug messages) push current version to github
- Implement 'manual' hit creation as in current AliRoot as option
 - understand how much is needed in future
- Start with simple digitisation

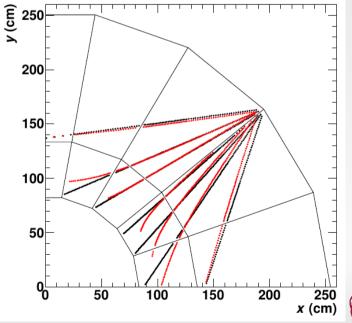
Backup

TPC in AliceO²

Distortions in the simulation

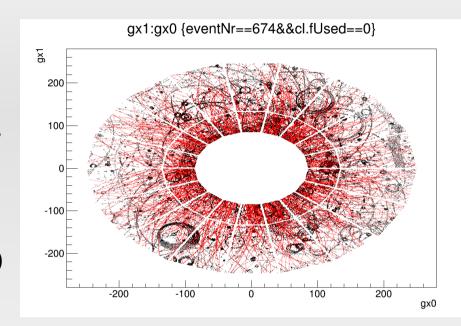
- Realistic implementation of distortions challenging
 - Required to develop calibration procedures
 - Studies ongoing in a fast MC https://alice.its.cern.ch/jira/browse/ATO-157
- For physics simulation parametrised distortions should be enough
 - Strategy to be developed




Tracking in run 3

Further investigation

- Full distortions in AliRoot
- Test if cluster to track association works with full distortions (no correction) with current HLT code
- might ease reconstruction
- HLT experts looking into this



Lossy compression

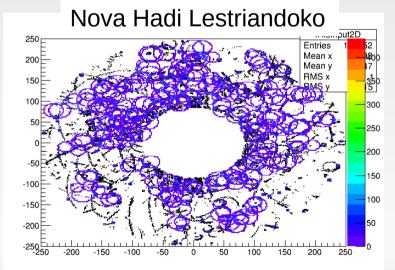
reminder

- Compression strategy requires removing of clusters not belonging to physics tracks
- Category 1: f1 ~70 % of background clusters
 - low momenta loopers to be signed and then rejected (if not overlap with category 2) - m1(0 bits) to represent
 - Loop finder efficiency (ε) to be validated (ε*f1)
- Category 2: f2 ~30% of remaining will be close to the tracks (more than one cluster should be allowed to be attached)
 - to be compressed to m2(~30) bits per cluster expected
 - → m2 expectation to be validated
- Category 3: rest ~ f3 (1-10%) will be not assigned to any topology above to be compressed to m3 bits (~40.)

Clusters belonging to physics tracks Clusters of non-physics tracks

https://alice.its.cern.ch/jira/browse/ATO-167 https://alice.its.cern.ch/jira/browse/ATO-101 Marian, Kai, Jens

Lossy compression


progress

- Development of junk detection e.g. hough transform methods
- Several people working on this topic
- Efficiency/fake rate/computing performance not yet satisfactory
- Lots of work still required

https://alice.its.cern.ch/jira/browse/ATO-218

Overall compression

- Clusterization & Huffman encoding routinely used in data taking suppression factor of > 4 (5) achieved
- Identifying loopers pp, p-Pb real data
 - 70% (80%background)
 - assume >80(90)% efficiency 1 − 0.7 x 0.8(0.9) = 0.44 (0.33) → factor
 > 2(3)
- Hierarchical cluster tracklet track model
 - store params w.r.t. resolution, saves bits + makes Huffman encoding more efficient 25 instead of 77 bits per cluster → factor > 3 (to be demonstrated)
- Huffman x loopers x hierarchical track model

$$= 4 (5) \times 2(3) \times 3 (?) = 24(45?)$$

Further work

 Digitisation simulation (SAMPA chip) → Implemented in AliRoot, baseline correction performance ok

https://alice.its.cern.ch/jira/browse/ATO-123

 Development of ITS-TRD/TOF interpolation (to be used already in Run 2!)

https://alice.its.cern.ch/jira/browse/ATO-108

- Space charge disortion calculation/correction
 - Development of performant methods for fast SC calculation
 - Usage of read-out current for SC calculation
 - ...

https://alice.its.cern.ch/jira/browse/ATO-10

Summary

- Basic TPC implementation in AliceO² simulation
- Tracking with full distortions still under investigation
- Work started on junk removal algorithms
- Many other related issues being worked on

- Still man power required on many levels
 - Implementation/porting of TPC code in O2
 - Development of performant calibration methods (CPU/GPU)
 - ...

