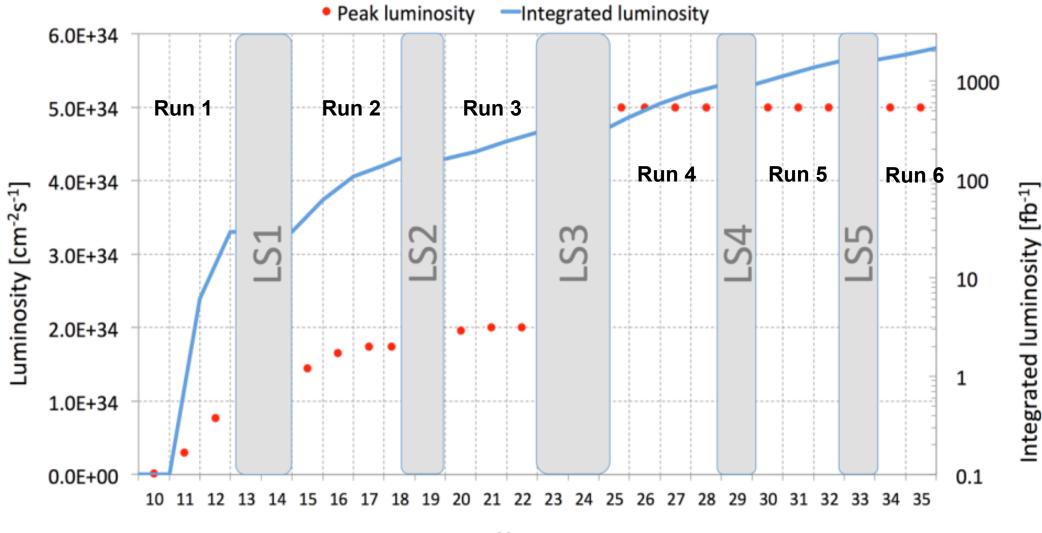

HL-LHC Data-taking Strategies

Yuri Gershtein Graham Kribs Stéphane Willocq

Preparing for the High-Luminosity Run of the LHC Perimeter Institute 8-9 June 2015

Further discoveries ahead?

- LHC Runs 2+3 with 300 fb⁻¹ at \sqrt{s} = 14 TeV
 - Dramatic increase in sensitivity in multi-TeV region relative to Run 1 at √s = 8 TeV


• HL-LHC with 3000 fb⁻¹ at $\sqrt{s} = 14$ TeV

- x10 luminosity increase to benefit searches for new physics with lower production cross section
- What discoveries are possible only at HL-LHC?

Future LHC Running

- Expect peak lumi = 5 x 10³⁴ cm⁻² s⁻¹ in 2025 and beyond
 - \rightarrow integrate ~250-300 fb⁻¹ / year with HL-LHC

[note: machine being designed to go up to 7.5 x 10³⁴ cm⁻² s⁻¹]

Mike Lamont @ Rencontres du Vietnam

HL-LHC Science Case

- Science case based on 3000 fb⁻¹ delivered by HL-LHC and "traditional" motivation/arguments
- Precision studies
 - Higgs properties, incl. rare decays ($\mu\mu$ and Z γ) and self coupling? \rightarrow coupling improvements by factor of ~2-3
 - Top properties (couplings, FCNC, rare decays)
 - W and top mass

BSM searches

- Extended scalar sector, dark matter, new particles, etc.
- Extend mass reach of heavy particle searches by ~20%
- Extend mass reach of weakly-produced new particles by factor up to ~2

HL-LHC Science Case

HL-LHC program: a significant challenge for the Standard Model

Battle of Waterloo 18 June 1815

HL-LHC Scenarios

- **1.** What if new physics discovered in Runs 2 or 3?
- 2. What if hints of new physics appear at the end of Run 3 or early in Run 4 @ HL-LHC?
- 3. What if NO hints of new physics appear after 1 ab⁻¹ @ HL-LHC (or after 300 fb⁻¹ in Runs 2+3)?

→ Criterion for "hints of new physics"?

- At least 1 analysis with 3 σ deviation from SM?
- At least 2 such analyses? Same analysis in each ATLAS & CMS?
- Higher significance threshold?

HL-LHC Scenarios

- **1.** What if new physics discovered in Runs 2 or 3?
 - a. Enhance searches with signatures similar and related to those where new physics appeared
 - **b.** Revisit trigger menu to address potential interpretations of evidence
 - c. Modify upgrade detector designs to enhance sensitivity
- 2. What if hints of new physics appear at the end of Run 3 or early in Run 4 @ HL-LHC?
 - a. Same as above?
 - b. Same as above?
 - c. Still time to modify upgrade detectors?
- 3. What if NO hint of new physics appears after 1 ab⁻¹ @ HL-LHC (or after 300 fb⁻¹ in Runs 2+3)?
 - Focus on precision measurements?
 - Attack less conventional signatures more aggressively?
 - Both impact trigger menu

- 3. What if NO hint of new physics appears after 1 ab⁻¹ @ HL-LHC (or after 300 fb⁻¹ in Runs 2+3)?
 - a. Precision, precision, precision (Higgs, Electroweak and QCD measmts)
 - b. Keep same LHC parameters, but open up 1/2 of the HLT rate to triggers for "crazy stuff"
 - → What kind of crazy stuff?
 - i. Hard-to-reconstruct processing
 - ii. Trigger-level analysis?
 - iii. Many low-pT particles / compressed scenarios?
 - iv. What else?
 - c. Fill a few of the bunches with small number of protons to get some collisions with low lumi. with tunable fraction of high to low lumi. → What kind of physics benefits from low PU?
 - i. Some crazy diffractive physics?
 - ii. With the scattered proton detectors in roman pots?
 - iii. Something with hidden glueballs / soft photon radiation?
 - d. Add new detectors to the existing ones?
 - e.g. in the spirit of http://arxiv.org/abs/1410.6816 ?

Extras: Higgs and BSM prospects from ECFA HL-LHC workshop 21-23 Oct 2014

https://indico.cern.ch/event/315626/other-view?view=standard

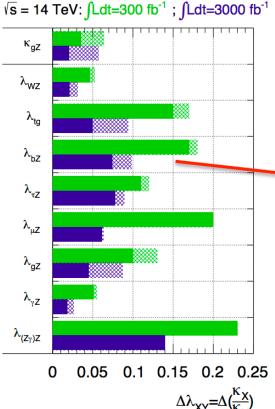
Higgs factory: HL-LHC

	Higgs bosons at √s=14TeV	$\begin{array}{c} 0000000 \\ top \\ 0000000 \end{array}$
HL-LHC, 3000fb ⁻¹	170M	
VBF (all decays)	13M	q W/Z W/Z ODDDDD top H
ttH (all decays)	1.8M	
Η->Ζγ	230k	_ / qbar
Η->μμ	37k	h .
HH (all)	121k	$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Coupling fit I

- New: VH->bb included in ATLAS, updates for H->Zγ, VH/ttH->γγ (*)
- No BSM Higgs decay modes assumed
- Comparable numbers for $\kappa_W, \kappa_{Z_r}, \kappa_{t_r}$ and κ_v between the experiments
- Couplings can be determined with 2-10% precision at 3000fb⁻¹ for CMS Scenario 2

		κ _γ	κ _w	K _Z	<mark>К</mark> g	к _b	κ _t	<mark>ہ</mark> ر	κ _{zγ}	κ _μ
300fb ⁻¹	ATLAS	[9,9]	[9,9]	[8,8]	[11,14]	[22,23]	[20,22]	[13,14]	[24,24]	[21,21]
300fb ⁻¹	CMS	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
3000fb ⁻¹	ATLAS	[4,5]	[4,5]	[4,4]	[5,9]	[10,12]	[8,11]	[9,10]	[14,14]	[7,8]
3000fb ⁻¹	CMS	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]


- ATLAS: [no theory uncert., full theory uncert.]
- CMS: [Scenario 2, Scenario1]

(*) ATL-PHYS-PUB-2014-011 ATL-PHYS-PUB-2014-006 ATL-PHYS-PUB-2014-012 6 ATL-PHYS-PUB-2014-016

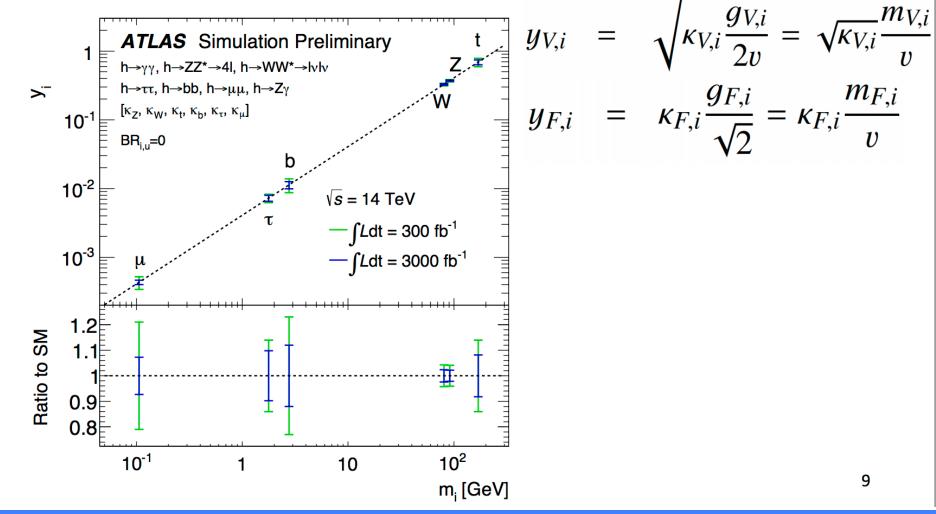
Coupling fit II

Remove the assumption on the total width

- Only ratios of the coupling scale factors can be determined at LHC
- Use given process as a reference

ATLAS Simulation Preliminary

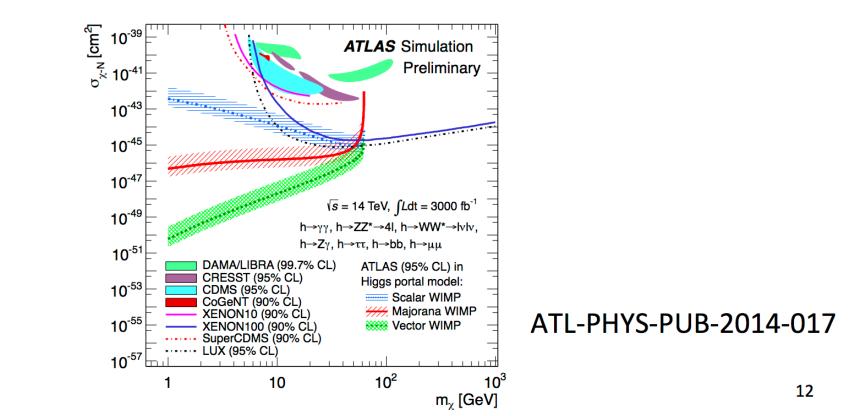
CMS[Scenario2,Scenario1]


$L (fb^{-1})$	$\kappa_g \cdot \kappa_Z / \kappa_H$	$\kappa_{\gamma}/\kappa_{Z}$	κ_W/κ_Z	κ_b/κ_Z	κ_{τ}/κ_{Z}	κ_Z/κ_g	κ_t/κ_g	κ_{μ}/κ_{Z}	$\kappa_{Z\gamma}/\kappa_Z$
300	[4,6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13,14]	[22,23]	[40,42]
3000	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12,12]

*	5.7	2.6	3.1	9.8	8.9	8.7	9.4	6.3	14
---	-----	-----	-----	-----	-----	-----	-----	-----	----

- 2-3% accuracy on few coupling constants at HL-LHC
 - Reduced theoretical uncertainties needed

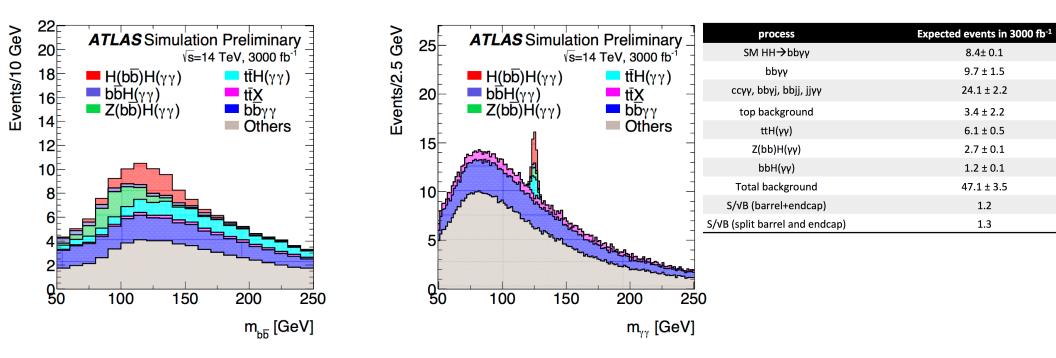
Mass dependence of couplings


- Higgs boson couplings versus the SM particle masses
- Define 'reduced' coupling parameters

10/21/14

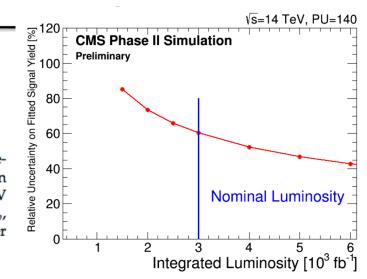
Higgs portal to Dark Matter

- BR of Higgs decays to invisible final states
 - ATLAS: BR_{inv}< 0.13 (0.09 w/out theory uncertainties) at 3000fb⁻¹
 - CMS: BR_{inv}< 0.11 (0.07 in Scenario 2) at 3000fb⁻¹
- The coupling of WIMP to SM Higgs taken as the free parameter
- Translate limit on BR to the coupling of Higgs to WIMP


Di-Higgs Production

- One of the exciting prospects of HL-LHC
 - Cross section at vs=14 TeV is 40.2 fb [NNLO]
 - Challenging measurement
 - New preliminary results from ATLAS and CMS
- Destructive interference

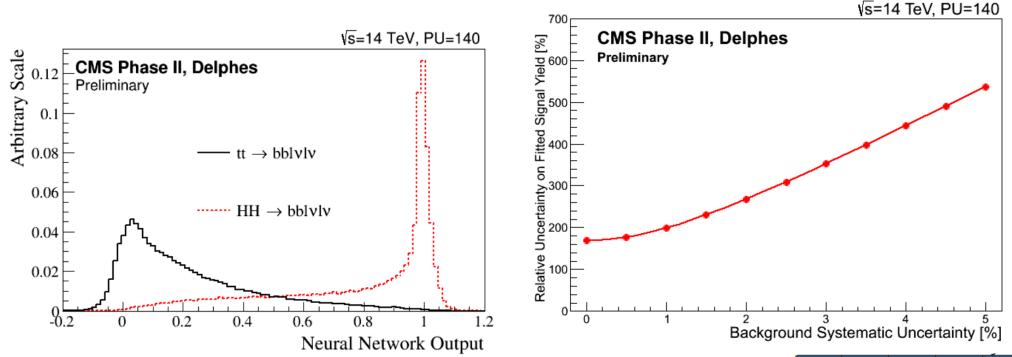
- Final states shown today
 - bbγγ [320 expected events at HL-LHC, 3000fb⁻¹]
 - But relatively clean signature
 - bbWW [30000 expected events at HL-LHC, 3000fb⁻¹]
 - But large backgrounds
 - bbbb and bbττ final states under consideration


Higgs Projections: di-Higgs

CMS results

Process / Selection Stage	HH	ZH	t₹H	bbH	$\gamma\gamma$ +jets	γ +jets	jets	tī
Object Selection & Fit Mass Window	22.8	29.6	178	6.3	2891	1616	292	113
Kinematic Selection	14.6	14.6	3.3	2.0	128	96.9	20	20
Mass Windows	9.9	3.3	1.5	0.8	8.5	6.3	1.1	1.1

Table 3: The expected event yields of the signal and background processes for 3000 fb⁻¹ of integrated luminosity are shown at various stages of the cut-based selection for the both photons in the barrel region. Mass window cuts are 120 GeV to 130 GeV for $M_{\gamma\gamma}$ and 105 GeV to 145 GeV for M_{bb} . A large fit mass window, 100 GeV to 150 GeV for $M_{\gamma\gamma}$ and 70 GeV to 200 GeV for M_{bb} , is used for the likelihood fit analysis. The statistical uncertainties on the yields are of the order of percent or smaller.



Higgs Projections: di-Higgs

HH->bbWW analysis

Search for HH \rightarrow bbWW \rightarrow bblvlv =

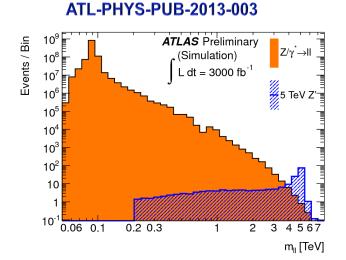
- Based on Delphes fast simulation tuned to CMS Phase II detector
- Considering only the main tt background
- The rest of the SM processes are negligible
- Neural Network discriminant to suppress tt
 - Signal region: Neural Network output > 0.97

Scenarios

- LHC Run 3 after Phase 1 upgrade:
- HL-LHC after Phase 2 upgrade:

300 fb⁻¹ at \sqrt{s} = 14 TeV, μ = 50

3000 fb⁻¹ at \sqrt{s} = 14 TeV, μ = 140


MC simulation

- Effect of pile-up taken into account
- Parameterization of upgraded ATLAS / CMS detector response
 - Resolution and reconstruction efficiency for e, mu, tau, photon, (b-tag) jets
 - Rates for light- and c-jets to pass b-tag requirements
 - Parameterization depends on pileup
- Systematic uncertainties
 - Generally based on completed 8 TeV data analyses
 - Improvement from higher luminosity in case of statistical limitation (CR)
- Analysis techniques
 - Simple approaches used \rightarrow sensitivity can be further improved

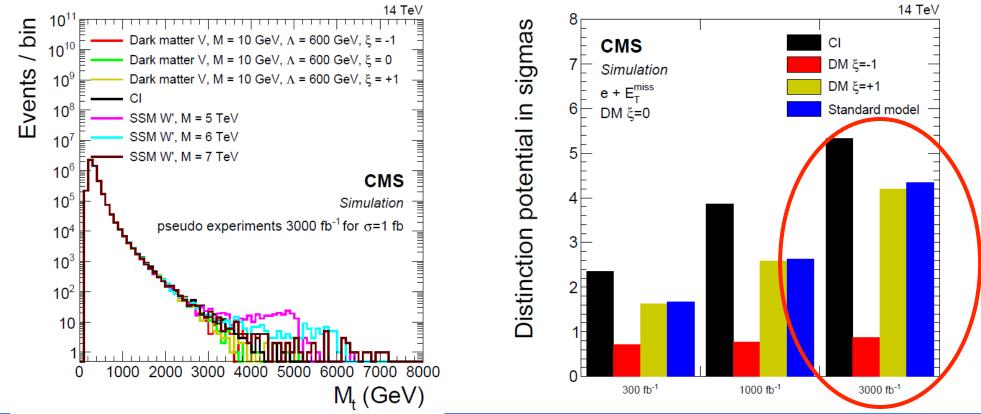
Dilepton Resonances

Many extensions of the SM predict new resonances

- Heavy gauge bosons W' and Z'
- KK excitations of vector bosons
- Clean decay channels
 - Z' $\rightarrow e^+e^-$ or $\mu^+\mu^-$

CMS Projection, 14 TeV e⁺e⁻ channel 10⁻¹ σ.Br(Z'→ee) (pb) discovery 300fb⁻¹ discovery 1000fb⁻¹ 10⁻² discovery 1000fb⁻¹, EB-EB only discovery 3000fb⁻¹ discovery 3000fb⁻¹, EB-EB only 10⁻³ 10-4 10⁻⁵ Z'_{SSM} (LO) Z', (LO) Z'_n (LO) 10⁻⁶ Z'_ψ (LO) 7000 2000 3000 4000 5000 6000 1000 m(Z') [GeV] Discovery up to 6.2 TeV (for SSM Z'

Z' mass lower limit @ 95% CL in SSM [ATLAS]	Run 1 @ 8 TeV (20 fb ⁻¹)	\sim	HL-LHC @ 14 TeV (3000 fb ⁻¹)	
Z' mass (ee)	Up to 2.79 TeV	Up to 6.5 TeV	Up to 7.8 TeV	No systematic uncertainties included
Ζ' mass (μμ)	Up to 2.53 TeV	Up to 6.4 TeV	Up to 7.6 TeV	uncertainties included


arXiv:1307.7135

Non-resonant signatures

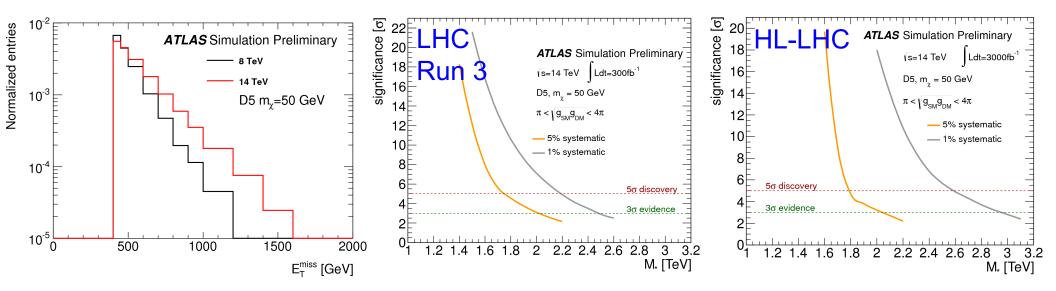
Models

- Contact interactions in charged-current process q q → I v
- Dark matter in p p \rightarrow W DM DM and W \rightarrow I v ("mono-lepton")
- Shape discrimination in transverse mass distribution
 - Compare SM W → I v with 1 fb signal from CI or dark matter
 - Significant separation from SM shape only achieved at HL-LHC

uuuuun **W**+

ATL-PHYS-PUB-2014-007

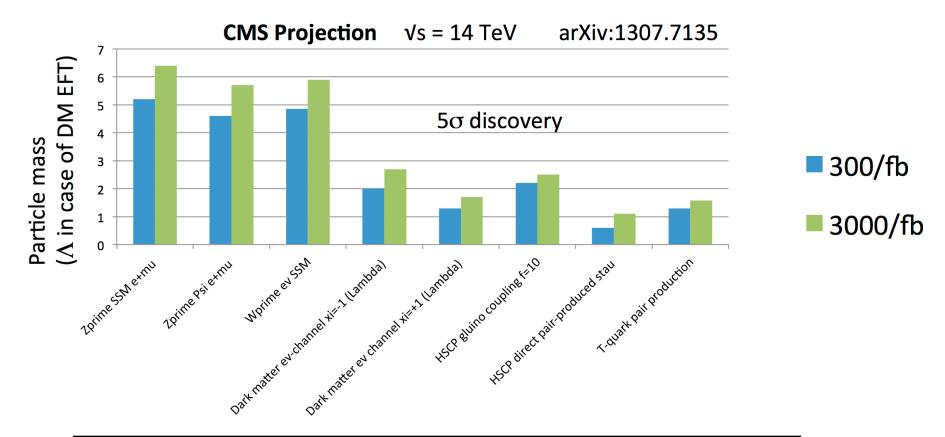
DM


DM

DM

DM

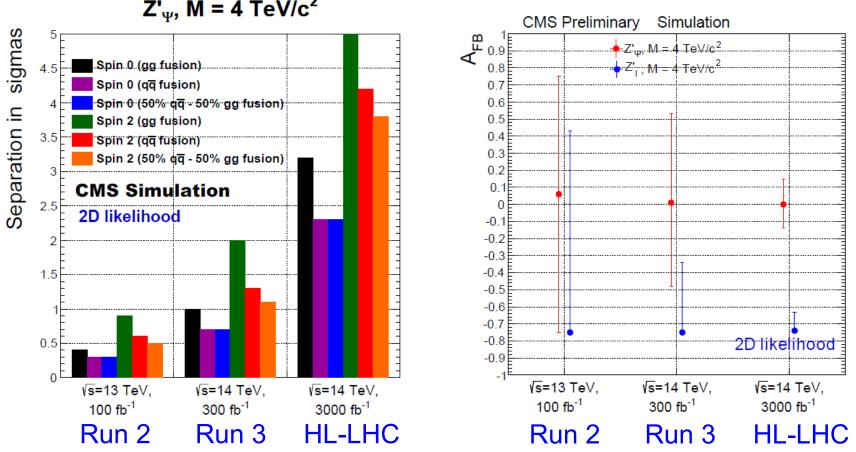
Models


- Effective Field Theory (contact interaction btw SM and DM particles)
- Simplified models with explicit mediator
- Signature ("mono-X")
 - Initial state radiation or direct coupling via mediator particle
 - Mono-jet: high-p_T leading jet (≤ 2 jets), large E_T^{miss}, e/μ veto

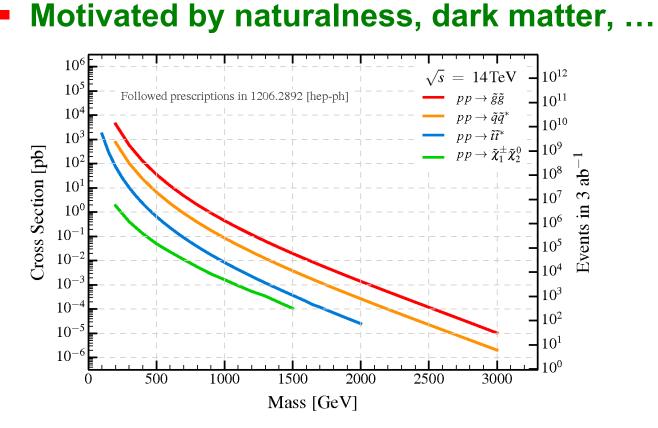
 5σ discovery up to suppression scale M* of 2.2 (2.6) TeV for 300 (3000) fb⁻¹ (assuming 1% systematic uncertainty)

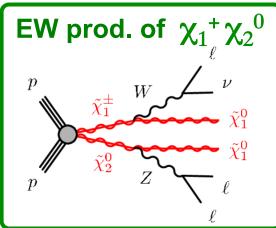
Summary of Exotics Prospects

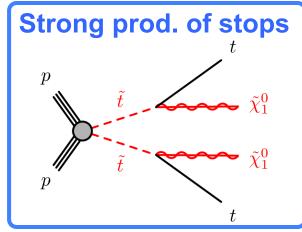
Sensitivity in multi-TeV range increases by ~20% with HL-LHC

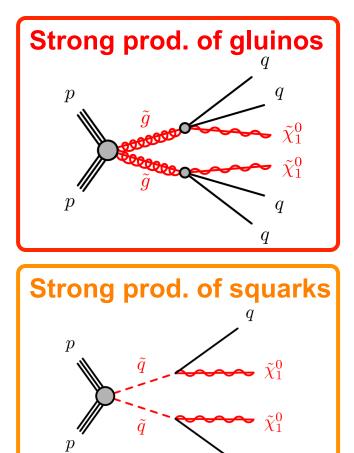

ATLAS Projection	Z' → ee SSM 95% CL limit	g _{кк} → t t RS 95% CL limit	Dark matter M* 5σ discovery
Run 3 @ 14 TeV (300 fb ⁻¹)	6.5 TeV	4.3 TeV	2.2 TeV
HL-LHC @ 14 TeV (3000 fb ⁻¹)	7.8 TeV	6.7 TeV	2.6 TeV

Model discrimination after discovery

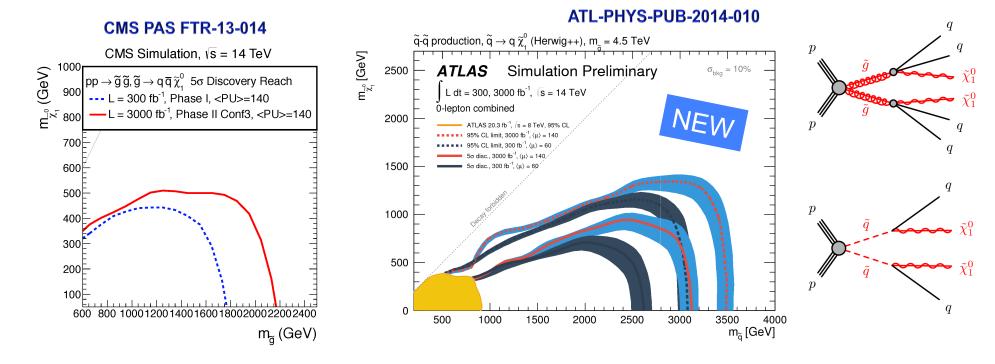

Ability to discriminate improves dramatically with HL-LHC


- Separation between spin-1 (Z') or spin-2 (G_{κκ}) interpretation and other interpretations ranges from ~2 to 5 σ
- 2D likelihood with dilepton angular and rapidity distributions or forward-backward asymmetry




 Z'_{ψ} , M = 4 TeV/c²

SUSY

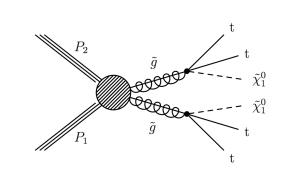

Gluinos not necessarily first to be discovered (many different mass spectra possible)

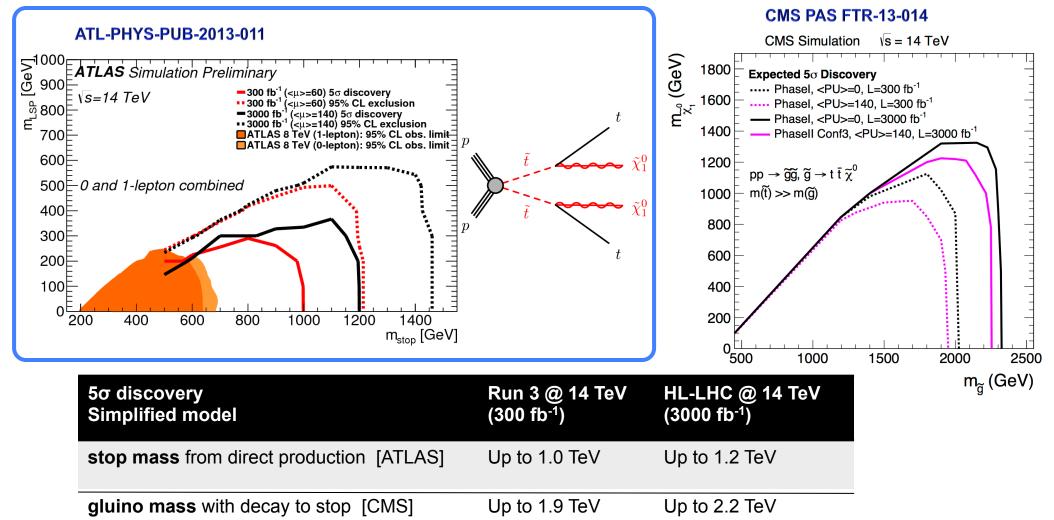
q

SUSY: Strong production of gluinos & squarks

Largest cross section: ~1 fb at M = 2 TeV

0 lepton + 2-6 jets + E_T^{miss}

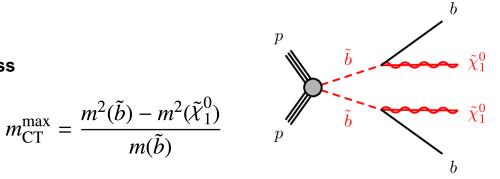

Interpretation in context of simplified model

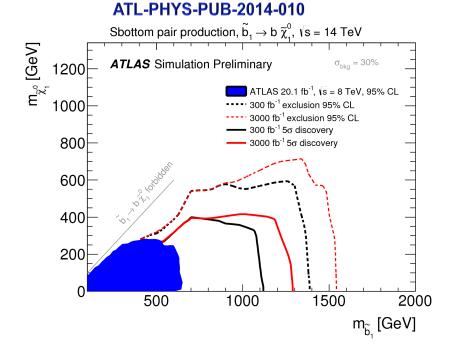

5σ discovery Simplified model	Run 3 @ 14 TeV (300 fb ⁻¹)	HL-LHC @ 14 TeV (3000 fb ⁻¹)
gluino mass [ATLAS]	Up to 2.0 TeV	Up to 2.4 TeV
gluino mass [CMS]	Up to 1.8 TeV	Up to 2.2 TeV
squark mass for m(gl) = 4.5 TeV [ATLAS]	Up to 2.6 TeV	Up to 3.1 TeV

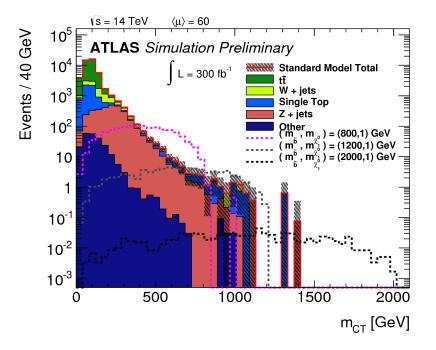
SUSY: Strong production of top squarks

Naturalness: requires stop mass < ~1 TeV</p>

- ATLAS: 0/1 lepton $+ \ge 4$ jets $+ \ge 1$ b-tag $+ E_T^{miss}$
- CMS: 1 lepton $+ \ge 6$ jets $+ \ge 1$ b-tag $+ E_T^{miss}$

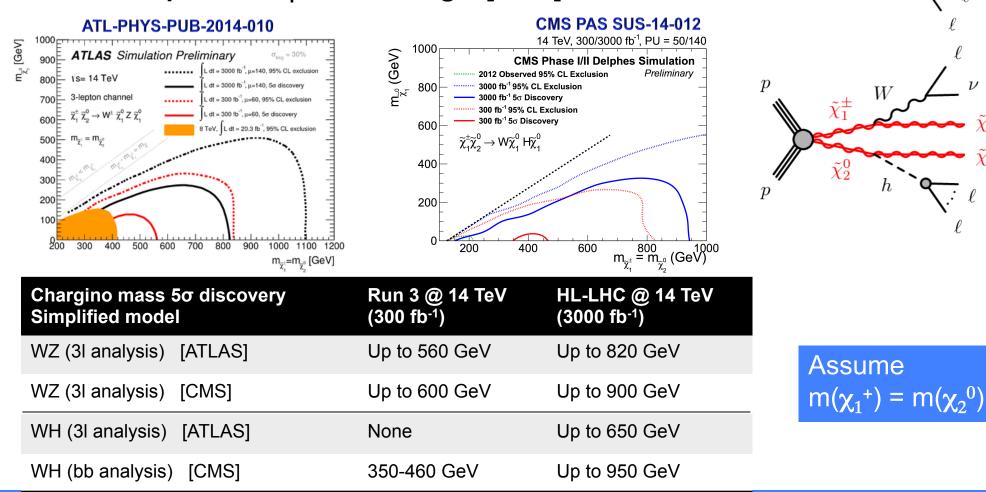





SUSY: Strong production of bottom squarks

Naturalness motivation

- ATLAS: 0 lepton + 2 b-tags + E_T^{miss}
- Use contransverse mass m_{CT}


5σ discovery	Run 3 @ 14 TeV	HL-LHC @ 14 TeV
Simplified model	(300 fb ⁻¹)	(3000 fb ⁻¹)
Sbottom mass from direct production [ATLAS]	Up to 1.1 TeV	Up to 1.3 TeV

NEW

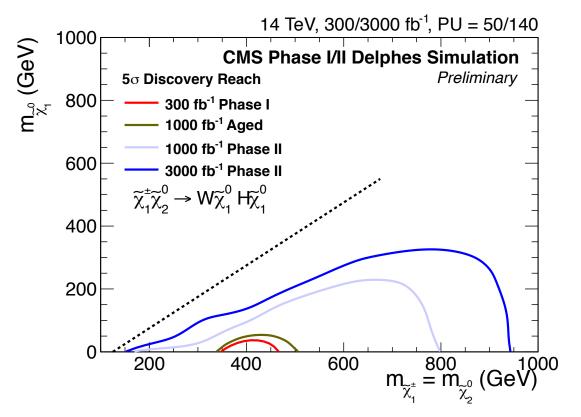
SUSY: Electroweak production of $\chi_1^+ \chi_2^0$

EW prod. lower by 2 orders of magnitude but can dominate SUSY production if squarks and gluinos heavy

- WZ: 3 leptons + E_T^{miss}
- WH: 3 leptons + E_T^{miss} [ATLAS] 1 lepton + E_T^{miss} + 2 b-tags [CMS]

W

 $\tilde{\chi}_2^0$

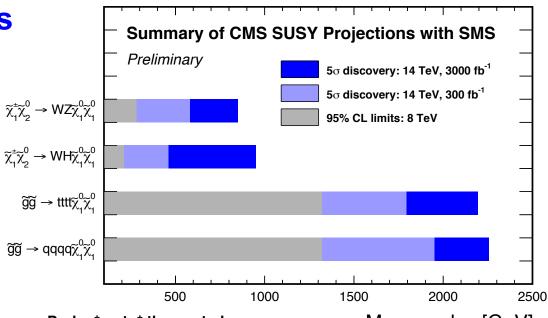

p

SUSY: Electroweak production of $\chi_1^+ \chi_2^0$

Importance of Phase II detector upgrade

CMS PAS SUS-14-012

WH: 1 lepton + E_T^{miss} + 2 b-tags [CMS]



- 950 GeV discovery reach with 3000 fb⁻¹, µ=140, and upgraded detector
- 450 GeV discovery reach with 300 fb⁻¹, µ=50, existing detector
- Continued running with degraded detector increases the physics reach only marginally for this SUSY signature

SUSY: Simplified models summary

Focus on production of a reduced set of sparticles

- Assume decoupled spectrum
- Decay BR generally assumed to be 100%
- Discovery potential increases by ~20% in terms of gluino, squark and stop masses
- More substantial gains for $\chi_1^+ \chi_2^0$ EW production
 - At least 50% increase in mass reach
 DOUBLES in case
 of WH final state

Probe *up to* the quoted mass

Mass scales [GeV]

ATLAS projection	gluino mass	squark mass	stop mass	sbottom mass	χ_1^+ mass WZ mode	χ_1^+ mass WH mode	
Run 3 300 fb ⁻¹	2.0 TeV	2.6 TeV	1.0 TeV	1.1 TeV	560 GeV	None	5σ discovery up
HL-LHC 3000 fb ⁻¹	2.4 TeV	3.1 TeV	1.2 TeV	1.3 TeV	820 GeV	650 GeV	to quoted mass

3 pMSSM models motivated by naturalness, different LSP

space

Exploring experimental signature

- NM1(2): bino-like χ_1^0 with low(high) slepton mass; NM3: higgsino-like χ_1^0
- 2 p(C)MSSM models, DM relic density, different coannihilation
 - STC: stau + χ_1^0 coann.
 - STOC: stop + χ_1^0 coann.

Explored:

- 9 different
 experimental
 signatures
- 5 different types of SUSY models

Analysis	Luminosity			Model		
	$({\rm fb}^{-1})$	NM1	NM2	NM3	STC	STO
all-hadronic (HT-MHT) search	300					
	3000					
all-hadronic (MT2) search	300					
	3000					
all-hadronic $\widetilde{\mathfrak{b}}_1$ search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

Exploring SUSY model space

 $< 3\sigma$ $3-5\sigma$ $> 5\sigma$

Different types of SUSY models lead to different patterns of discoveries in different final states after different amounts of data

SUSY: Full-spectrum models

500

1000

1500

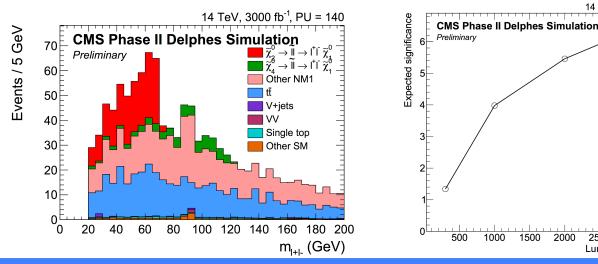
2000

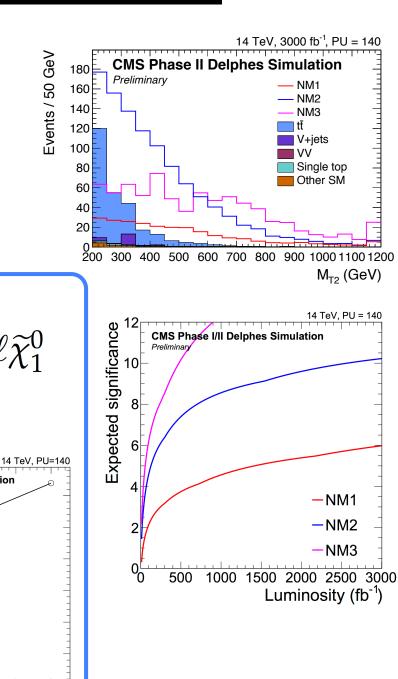
3000

Luminosity (fb⁻¹)

2500

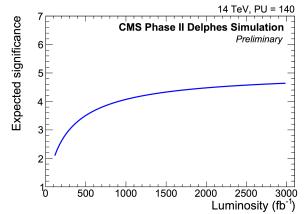
GeV

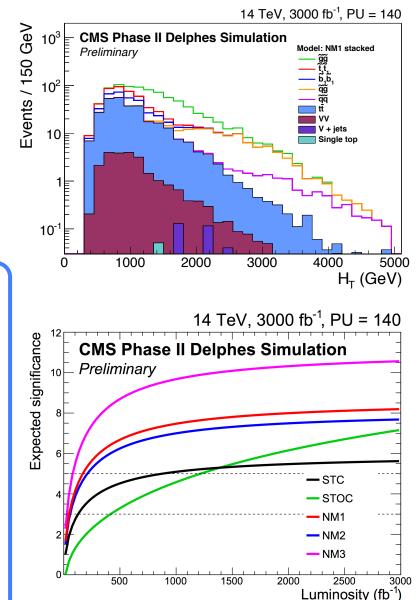

Events / 50

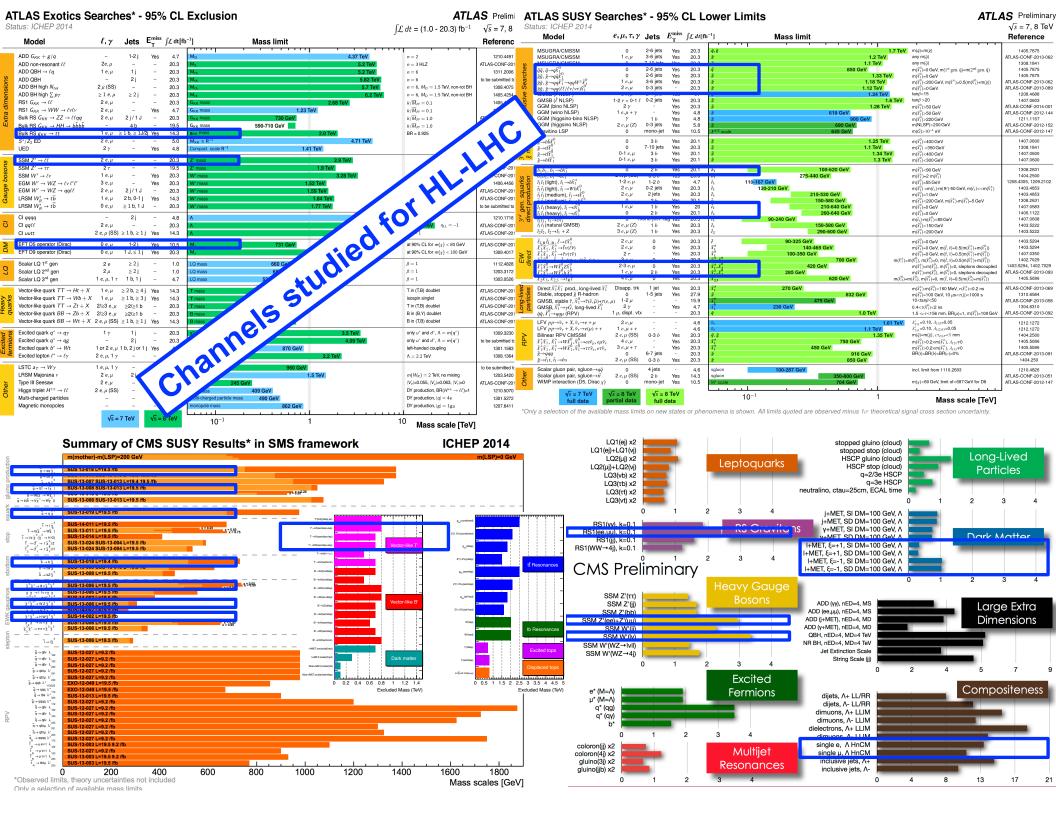


- **Targets natural SUSY with gluino pair** production and 2 LSPs \rightarrow use stransverse mass MT2
- Gluino decay through stop and sbottom \rightarrow large # b-jets and jets, E_{τ}^{miss}

- NM1: gluino decay with $\widetilde{\chi}_2^0 \to \widetilde{\ell}\ell \to \ell\ell \widetilde{\chi}_1^0$
- Dilepton + \geq 6 jets + \geq 1 b-tag + E_{T}^{miss}
- Edge significance > 5σ at HL-LHC


SUSY: Full-spectrum models


Direct stop pair in 1 lepton+jets


- Wide range of production processes
- Moderate 1.7 TeV gluino mass scale allows sensitivity to 3 TeV squark
- Discovery only possible at HL-LHC for STC and STOC models

Compressed spectra

- If stop and χ₁⁰ masses close, dominant decay is stop → c χ₁⁰ in STOC
 → use mono-jet signature
- Just below 5σ at HL-LHC but complementary to HT-MHT analysis in STOC
 Just below 5σ at HL-LHC but analysis

