

BEAM INSTRUMENTATION

Thibaut Lefevre (CERN) On behalf of the WP13

5th Joint HiLumi LHC- LARP Annual meeting - 2015

Progress with WP13 Tasks

- Cryogenic BLMs & Radiation Hard Electronics
 - Cryogenic BLMs
 - Radiation hard electronics (LHC CONS for R&D)
- Insertion Region BPMs
- High Bandwidth Pick-ups
- Halo beam diagnostics using Synchrotron Light
- Fast Wire Scanners (LIU for R&D)
- Beam Gas Vertex Detector
- Luminosity Monitors
- Long-Range Beam-Beam Compensator
 - Prototype (EN/STI) and collaboration on gas jet scanner with ULIV

Beam Loss Monitoring for HL-LHC

- Essential for safe & reliable operation of LHC
 - Prevents damage to accelerator components
 - Avoids quenches & associated timeconsuming cryo recovery
- Existing system
 - Meets needs of the HL-LHC in arc regions
 - ~3000 ionisation chambers
 - Radiation tolerant front-end electronics
- New requirements for high luminosity interaction points
 - Cryogenic beam loss monitors for triplet magnets
 - Radiation Hard front-end electronics

Cryogenic Beam Loss Monitors

- HL-LHC triplets running close to quench limit due to luminosity
- Current BLM thresholds factor 3 below quench level
 - Not possible for HL-LHC triplet

Possible

CryoBLM

location

- Need more precise measurement
- Cryo-BLMs give 2-3 times better separation of debris & loss

High Luminosity

debris

losses in Q2B

Current

BLM

location

Cryogenic Beam Loss Monitors

- Two types of detectors tested under irradiation at cold (4K) up to several MGy at IRRAD
 - Single crystal chemical vapour deposition diamond (CIVIDEC)
 - p⁺-n-n⁺ silicon
- At low irradiation doses, silicon
 has a larger sensitivity than diamond
- For very high radiation doses, diamond sensors perform better than Si

- The expected reduction in detector sensitivity after 2MGy irradiation is of a factor of 50 for Si under 300V reverse bias and 15 for diamond.
- Diamond not as reproducible as Si

Luminosity

Installation of detectors on a cold mass of Dipoles 1. 2.

- One scCVD diamond detectors (bounded to FR-4 PCB, glassreinforced epoxy laminate)
- Three Si detectors (on FR-4) PCB) in collaboration IOFFE Physical Technical Institute, St Peterburg
- Location: LHC bending magnet 9L5, 9R7
- Data are logged in logging database (first only from 9L5)

- 500µm scCVD diamond,
- 100µm Si detector,
- 3. 300µm Si detector,
- 300µm Si detector. 4.

Beam Position Monitoring for HL-LHC

5th Joint HiLumi LHC- LARP Annual meeting - 2015

Beam Position Monitoring for HL-LHC

- LHC Beam Position System
 - Over 500 BPMs per beam capable of bunch by bunch acquisition
 - No performance increase required for arc BPMs
 - Renovation of the electronics foreseen for Long Shutdown 3 (2023-2025)
- New BPMs required for HL-LHC insertion regions
 - Directional stripline BPMs installed in triplet's interconnection
 - Distinguish between both beams (in same vacuum chamber)
 - Limited by signal isolation of one beam on the other
 - Location optimised for time separation
 - Directivity optimised by design

Directional Stripline Couplers

- Current BPMs suffer from limited directivity (~27 dB @ 70MHz)
 - Leads to position error from tens to hundreds of microns
- New designs being pursued to improve this
 - 7-10 dB improvement demonstrated in simulation
 - Next step is to turn this into mechanical design with all the constraints of a cryogenic BPM

Interaction Region BPMs

- Mechanical design launched (aiming at 1st prototype in 2016)
 - Two designs being considered (circular & octagonal)
 - Fluka simulations being performed to confirm need of Inermet absorbers

- Compared DOROS and WBTN (standard LHC orbit) electronics
- First results show 'exclusion zone' of
 - ± 6.5 ns for WBTN
- ± 2.5 for DOROS

High resolution orbit measurement

CER

Intra-Bunch Diagnostics

5th Joint HiLumi LHC- LARP Annual meeting - 2015

Intra-Bunch Diagnostics

- Already important for understanding instabilities
 - Electron cloud, impedance, beam-beam,
- Will also be essential for crab cavity diagnostics
 - Understanding their effect on the beam

- Electromagnetic monitors already installed in LHC
 - Bandwidth of some 2 GHz

Higher Bandwidth BPMs

 Collaboration with RHUL on pick-ups based on electro-optical crystals and laser for higher bandwidth > 10 GHz

• Mechanical design (EN/MME) of first prototype finished - Aiming for installation of prototype in SPS-LSS4 during YETS15/16

Non-invasive beam size measurement

To overcome limitations of wire scanner & synchrotron light

Non-invasive beam size measurement

• The Beam Gas Vertex Detector

- Concept used by LHCb vertex detector (VELO) JINST 7 (2012) P01010, JINST 9 (2014) P12005
- Collaboration between CERN, EPFL (CH), RWTH (DE)

High Luminosity LHC

5th Joint HiLumi LHC- LARP Annual meeting - 2015

Non-invasive beam size measurement 🖤

- Prototype installed on one beam during LS1
 - Detectors based on scintillating fibres
 - Read-out with Silicon **Photomultipliers**

uminosity

Quantity	Accuracy	Time interval	Key factors
Relative bunch width	5 %	$< 1 \min$	vertex resolution stability
Absolute average beam width	2~%	$< 1 \min$	$\sigma_{ m beam},\sigma_{ m MS},\ \sigma_{ m extrap}~(\sigma_{ m hit})$

Beam Gas Vertex Detector

- 4 of the 8 scintillating fibre detector units installed in TS2
 - Remaining detectors foreseen for installation in TS3
- Detector cooling installed & commissioned in TS2
- Commissioning phase started
 - DAQ & Trigger all seem to behave as expected
 - On-line reconstruction being implemented

Halo Diagnostics for HL-LHC

Halo Diagnostics for HL-LHC

- No instrumentation currently installed in LHC to measure the beam halo
- Important diagnostic for HL-LHC to measure Halo creation and mitigation techniques based on
 - Hollow electron beam collimation
 - Long range beam-beam compensators
- Aiming at high dynamic range measurement (up to 10⁻⁵) using non-Invasive technique
 - Optical techniques using synchrotron radiation in collaboration with KEK

Lyot's Solar Coronagraph, 1936

Coronagraph for Halo Diagnostics

Coronagraph based on masking techniques with re-diffraction system (eliminating diffraction fringes)

 Project Phase 1 – Design and Test a first coronagraph in LHC based on an existing design developed at KEK in 2005 by T. Mitsuhashi

-0.2

1st image plane

Coronagraph for Halo Diagnostics

- Project Phase 2: Design and implementation of a fully optimised system aiming at 10⁻⁵-10⁻⁶ contrast ratio
 - Reducing background and noise to the maximum
 - Lens's surface quality (scratches and digs), spurious reflections in the telescope, noise from dust in air

Courtesy of Toshiyuki Mitsuhashi

Summary

- LHC constructed with comprehensive suite of beam diagnostic devices
 - These play an important role in its safe & reliable operation
- HL-LHC will push the performance of LHC even further
 - Requires a deep understanding of beam related phenomena
- Can only be delivered through its beam instrumentation
 - Upgrade to many of the existing systems
 - Development of new diagnostics to address specific needs
- BI R&D for HL-LHC is now progressing well relying on the support of many external collaborators

Special Thanks to all external collaborators and CERN colleagues who contributed to this talk

Spares slides

NOTE: For better visibility the upper frequency axis for the standard BPM data is slightly shifted with respect to the bottom axis of the DOROS data.

5th Joint HiLumi LHC- LARP Annual meeting - 2015

25ns – Measuring Instabilities

Intra-bunch measurements

Multiband Instability Monitor – currently being developed

- 16 bands @ Δf_b = 400 MHz
- Use filter bank followed by direct diode detection for high sensitivity
- Can infer mode of oscillation and be used to trigger other systems

• New schief est Schasps for Schasps for November

- Prototype of new control electronics ready
- Conceptional design of scanner in the BOOSTER finished
 - The BOOSTER design will be the base design for all other scanners
 - Same actuator design for all rings
 - Different fork and vacuum tanks

11L1

Luminosit

- Installation of prototype stop 2016/17
- LS2 installation foreseen for BOOSTER, PS, SPS and LHC (prototyp proposed)

4L1

xxx, B.Dehning

BGV Demonstrator

Date	Milestone	
10-2012	First design studies	
03-2013	LMC supports continued development	
03-2014 03-2014	BGV Demonstrator ECR (https://edms.cern.ch/document/1324635/1.0) BGV Collaboration Agreement	BGV https:
07 2014	(CERN, RWTH Aachen, EPFL Lausanne)	C
07-2014	Installed half detector and DAQ	plan

Completion of the installation planned for TS3 and YETS 2015

Vacuum system

Designed and produced at CERN

Detector

Scintillating fibres read out with S Developed by EPFL and RWTH Same technology as for the LHCk

Vacuum system

- Installed and aligned (July 2014)
- Gas injection system commissioned (Sep 2015)

Detector

- Scintillating fibres (250 um) and SiPMs
- Challenges:
 - Light tightness
 - SiPM cooling & dry air
 - Metrology & alignment

Detector

• In total 8 detector modules

High Luminosity LHC

- 4 installed in TS2 2015
- 4 being prepared for installation in TS3 2015

Detector cooling

- SiPM noise increases with radiation
- System developed to cool SiPMs to -40 C
- Installed a standalone chiller in the service tunnel and a transfer line
- Circulation tests ongoing

Other sub-systems

- Chamber temperature monitoring and cooling fans
- Trigger scintillators; Dry air distribution

Readout & Control

- BGV readout based on LHCb VELO
 - 25 ns, 1 MHz maximum rate
- Control based on PVSS/WinCC-OA (copy LHCb)
 - Interface to LHC CMW to exchange data and commands

DAQ Installation

- DAQ installed in TS2 2015
- All systems functional
- Commissioning ongoing

Status and prospects

- The BGV Demonstrator installation is almost complete
- Commissioning of detector and readout ongoing
- Milestones to first beam profile measurement
 - Tuning of readout timing (ADC delay scan)
 - Commission trigger
 - Apply SiPM signal correction; zero-suppressed readout
 - Track and vertex reconstruction

Analysis software

- Using the LHCb framework (Gaudi)
- Work ongoing on the event reconstruction algorithms
- Next development steps:
 - Online application to accumulate the reconstructed vertices and determine the beam profile
 - Transmission and logging of event data and measurements

Measurement of small beam sizes using the synchrotron light monitor

Interferometry

•Non-diffraction limited & widely used in e⁻ machines for very small beam sizes

•New project in collaboration with KEK, SLAC & CELLS-ALBA

Simulated interference fringes with ZEMAX

Interference fringes for different emittances & predicted visibility as function of emittance

BSRA update

- Abort Gap Monitor (BSRA) now connected to the software interlock system (SIS).
- Automatic AG cleaning tested in July 2015, now routinely implemented
- Automatic calibration procedures required for reliable operation.
 Internal PMT Gain calibration now part of sequencer, periodic calibration against FBCT to be finalised.

Gas Jet Techniques

- Gas sheet & luminescence (University of Liverpool (UK) & CERN)
 - Being considered for hollow electron lens diagnostics

- Gas jet scanner alternative to wire-scanner
 - Use of atomic sieve to focus neutral gas atoms
 - Quantum interference
 - Scan faster/slower for core/halo

Luminosity

