

Energy deposition in the Triplet-D1 region (V1.2)

A. Tsinganis, F. Cerutti EN/STI/EET

With input from: G. Arduini, R. De Maria, I. Efthymiopoulos, S. Fartoukh, R. Fernandez-Gomez, P. Ferracin, P. Fessia, C. Garion, T. Lefevre, T. Nakamoto, M. Sugano, E. Todesco

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Outline

- Simulation setup
 - Layout and optics
 - Geometry
- Results for round optics (V/H)
 - Total power
 - Peak power/dose
- Other optics
- Dose minimisation with alternative optics & crossing combinations
- Dose map in the tunnel
- Summary & further studies

Simulation setup

Layout and optics

- Element lengths and positions extracted from V1.2 TWISS file
 - Exception: TAS kept at V1.1 position
 - TAS aperture = 60mm
- New magnetic field map for D1, normalised to the TWISS value (as for all magnetic elements)
- Two main scenarios studied:
 - Round optics, β*=15cm, crossing 295µrad
 - 1. Vertical crossing (IP1)
 - 2. Horizontal crossing (IP5)

Geometry upgrades & updates

• 1. Update of various layer thicknesses

Geometry upgrades & updates

• 2. Beam screen design

- Inermet shielding extended towards the poles in "thin" BS (50% filling factor)
- Adjustment (1.1mm radial reduction) of dimensions to adapt to change in the defined coil aperture and other layers (insulation etc.) (previous slide)

Geometry upgrades & updates

• 3. New FLUKA models of interconnect with circular BPM

Design provided by R. Fernandez-Gomez, T. Lefevre

Results

Total power for $L=7.5L_0$

	Round vertical		Round horizontal		Round vertical V1.1	
	Magnet cold mass	Beam screen	Magnet cold mass	Beam screen	Magnet cold mass	Beam screen
	Power [W]					
Q1A + Q1B	167	251	176	257	140	210
Q2A + corr.	139	115	127	101	150	90
Q2B + corr.	170	147	178	153	165	100
Q3A + Q3B	186	153	160	125	220	105
СР	85	106	58	73	105	90
D1	113	107	92	84	135	80
TOTAL	860	879	791	793	915	675

 Extension of BS shielding towards poles (with a 50% filling factor!) re-balances loads between CM and BS

• Loads in horizontal crossing ~10% lower with respect to vertical crossing

Peak power density (L=7.5L₀)

- Peak power density well below design values overall
- There is an important effect in the IP-faces due to shielding gap in the interconnect, especially in horizontal crossing

Peak dose ($L_{int} = 4000 \text{ fb}^{-1}$)

Vertical crossing

Horizontal crossing

Energy deposition in the Triplet-D1 region (V1.2) | 5th Joint HiLumi LHC-LARP Annual Meeting – CERN, October 26-30, 2015 | AT 11

Peak dose ($L_{int} = 4000 \text{ fb}^{-1}$)

- The horizontal case is worse
 - Shielding gap in the interconnect creates a localised problem

Peak dose profile in the inner coils ($L_{int} = 4000 \text{ fb}^{-1}$)

Is this consistent with previous results?

- YES
 - An increase in the peak dose in Q2B is expected going from vertical to horizontal crossing
 - A longer gap (from 10 to 50cm) in the BS shielding was shown to lead to significantly higher peak dose values in the IP-faces (especially in Q2B)
 - REMINDER: Gap is now ~71cm

 $L_{int} = 3000 \text{fb}^{-1}$

See F. Cerutti, 5th PLC Meeting, July 2, 2013

Further studies: flat optics

- Two flat optics scenarios were also studied for both vertical and horizontal crossing
 - 150 μ rad half-crossing angle, $\beta_x^* / \beta_y^* = 40 / 10$ cm
 - 210 μ rad half-crossing angle, $\beta_x^* / \beta_y^* = 40 / 10$ cm
- Sensitivity of results to changes in bunch length and beam divergence is limited
- On the contrary, the crossing angle plays an important role
 - Lower dose for lower crossing angle

Vertical crossing

Horizontal crossing

Peak dose minimisation with alternative optics & crossing combinations

In collaboration with S. Fartoukh (BE/ABP)

Energy deposition in the Triplet-D1 region (V1.2) 5th Joint HiLumi LHC-LARP Annual Meeting – CERN, October 26-30, 2015 AT 15

- Different combinations of optics and crossing can reduce peak dose values
- The flexibility of such combinations depends on various constraints e.g.:
 - Possibility of exchange of crossing planes between IP1 and IP5 ($HV \rightarrow VH$)
 - Possibility of running with the same crossing plane in IP1 and IP5 (HH or VV)
- Four scenarios considered, with decreasing constraints:
 - <u>1. Baseline scenario</u>: 50% vertical up (V⁺) / 50% vertical down (V⁻) in IP1, 100% horizontal (H) in IP5 with round optics
 - 2. Crossing plane exchange between the two IPs: 50% H, 25% V⁺, 25% V⁻ with round optics
 - 3. Crossing plane exchange between the two IPs: 50% H, 25% V⁺, 25% V⁻ with flat optics (150µrad)
 - 4. No constraints: 50% V⁺ / 50% V⁻ with flat optics (150µrad) in both IPs, which is better than 100% H

<u>1. Baseline scenario:</u>

Luminosity

- 50% vertical up (V⁺) / 50% vertical down (V⁻) in IP1
- 100% horizontal (H) in IP5 with round optics
- Important reduction in IP1 (from 35 to 25MGy)
- BUT, we remain exposed to the high peak value in IP5
 - If the local problem is cured, peak values would be below 30MGy.

- 2. Crossing plane exchange between the two IPs
 - 50% H, 25% V⁺, 25% V⁻ with round optics in both IPs

.uminositv

- 3. Crossing plane exchange between the two IPs
 - 50% H, 25% V⁺, 25% V⁻ with flat optics (150µrad)

- 4. No constraints
 - * 50% V⁺ / 50% V⁻ with flat optics (150 μ rad) in both IPs

• Comparison of three mixed scenarios:

Alternative designs

- Circular BPM in Inermet
 - Peak dose reduction up to 10%
- Octagonal BPM with inner Inermet absorbers
 - Shielding gap reduction to ~57cm (instead of 71cm with circular BPM)
 - The shorter gap would surely lead to a reduction of peak dose values
 - **BUT** the gap is still quite long (more than the 50cm studied in the past)
 - This solution is not expected to cure the problem

Courtesy: T. Lefevre

Is it possible to further extend the shielding?

Luminosity

Dose map in the tunnel

Energy deposition in the Triplet-D1 region (V1.2) 5th Joint HiLumi LHC-LARP Annual Meeting – CERN, October 26-30, 2015 AT 23

Dose per year of operation ($L_{int} = 300 \text{ fb}^{-1}$)

• Relevant for vacuum and survey equipment, cabling etc.

Dose [MGy/300fb⁻¹] , -20cm < Y < 20cm

- Averaged over ±20cm from the beam level
- Dose ~1kGy in the tunnel, except in the TAS-Q1 region
- A few tens of kGy at the interconnects

Luminosity

Summary

- Simulation parameters updated to V1.2
- Various geometry updates (magnet aperture, BS designs)
- New models added: interconnects with circular BPM
- Peak dose estimates show challenging localised problem in IP-face of Q2B, especially for horizontal crossing
- Flat optics scenarios show improvements attributable to the lower crossing angle
- Different optics and crossing combinations (depending on hardware options) could significantly reduce peak dose values
- Dose of ~1kGy per year in the tunnel

Looking further...

• Study will be extended to the matching section

Current reference for the D2-Q4 region: L. Esposito's talk at the 2014 Annual Meeting at KEK http://indico.cern.ch/event/326148/session/17/contribution/43

- Most significant changes with respect to V1.1
 - TAXN twin bores from 80mm to 85mm
 - D2-Q4 corrector aperture: from 100mm (previously guessed) to 105mm (as the D2)
- Both crossing planes need to be studied
- ...and further:

.uminosity

• Debris losses in the **Dispersion Suppressor**

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

