

MQXF Coil Fabrication: Observations and Summary

E.F. Holik

Acknowledgements: G. Ambrosio, M. Anerella, R. Bossert, N. Bourcey, E. Cavanna, D. Cheng, D. R. Dietderich, P. Ferracin, A. K. Ghosh, S. Izquierdo Bermudez, S. Krave, A. Nobrega, J. C. Perez, I. Pong, E. Rochepault, G. L. Sabbi, C. Santini, J. Schmalzle, and M. Yu

5th Joint HiLumi LHC-LARP Annual Meeting 2015 CERN, October 26th – 30th

- Coil Fabrication Summary & Overview
- Coil size and asymmetry
- Cable Expansion / Gap Closure
- Cross Section Analysis
- Conclusion

- 6 short coils with 108/127 RRP
 - Coil 01 R&I @ BNL, leaky valve impregnation, was cut
 - Coil 02 R&I @FNAL, Mirror, 91% SSL @4.2K, Ta ternary
 - Coil 03 R&I @ BNL, coil in MQXFS01-AS
 - Coil 04 R @ LBNL, Reversed end parts, Not impregnated...
 - Coil 05 R&I @ BNL, coil in MQXFS01-AS
 - Coil 06 R&I @ FNAL, Spare, Slight epoxy voids near LE
- LARP is beginning MQXF 2nd gen
 - Coil 07 Winding beginning this week, (108/127 RRP)
 - Coils 09 & 10 in queue 144/169 RRP
- 3 long coils in fabrication
 - Long Coil 01 Reacted @ BNL, prep for Impreg, For long mirror.
 - Long Coil 01p R&I @ FNAL, Test for 2nd gen radial insulation.
 - Long Coil 02 L1 cured, Spare for mirror and first long magnet.

Coil DRs

Bubbles in Practice Coil 1

Epoxy line valve leaked under vacuum.

• Reversed End Parts in Coil #4

Parts mislabeled by Plasma coating company. Coil Electrically sound.

Coil DRs

Weak Impregnation in Coils #2 and #6 near LE

- Channel will be filled in subsequent coils.
- No adverse effects from **Mirror** Test

Epoxy Overflow

Racetracking'... Epoxy goes through side channel and fills overflow before filling coil, trapping some air in the process

Impregnation

	LBNL	FNAL	BNL
CTD-101k density = 1.03 g/cc	CTD-101k	CTD-101k	CTD-101k
SETUP			
		55°C (80°C possible)	
		(110°C with strip	
Backout temperature	110°C	heaters)	110°C
Bakeout pressure	10 - 100 mT	25 mT	200 - 500 mT
Bakeout time	6 hrs	45 hrs	8 hrs
Dryout Gas flow	none	none	none
Cool down temperature	60°C	55°C	55°C
Coil Orientation	~30° wrt horiz.	~13° wrt horiz.	Vertical
Lead Orientation	Leads up	Leads up	Leads up
EPOXY DEGAS			
Epoxy Volume mixed (1.7 l			
needed)		22 liters (6 gal.)	
Epoxy degas temperature	50°C - 60°C	?	55°C
		45 min (2h tot	
Epoxy degas time	?	mix/heat)	2 h
Epoxy agitation while degassing	Y	Y	Y
Epoxy Vacuum while agitating	300 mTorr	800 mT	500 mT
Epoxy container depth	?	18"	3.25"
IMPREGNATION			
Initial magnet temperature	60°C	55°C	55°C
VPI coil vessel pressure	1000 mT	2000 mT	500 mT
VPI epoxy vessel pressure	760 Torr	760 Torr	760 Torr
Feed method	pressure diff.	pressure diff.	Peristaltic pump/ Δ_P
Flow measure method	none	visual (1 cm/s)	pump output
Epoxy flow rate	n/a	7 cc/min	25 cc/min
Fill time (short coil)	1.5 h	1.5 h - 3 h	2 h
Gel / Soak			
Additional Epoxy Through Flow	30 min (line reservoir)	30 min (line resevoir)	none
	1"-2" of large tube (~1/10)		
Backfill (re-absorption)	[OXF equivalent])	2'-4' of tube (~1/3 liter)	n/a
Epoxy Inlet Valve	Closed	Closed	Open
Epoxy Outlet Valve	Open	Open	Closed
Press/Vac cycles (milking)	2	0	0
VPI Vessel Pressure	- 760 Torr	760 Torr	500 mTorr
Coil Back pressure	760 Torr	760 Torr	760 Torr
Soak/Gel time @ 50° C - 60° C	15 h	18 h	16 h
CURF	1511	1011	1011
VPI Vessel Pressure	760 Torr	760 Torr	500 mTorr
Coil Back pressure	760 Torr	760 Torr	760 Torr
Ramn	$60^{\circ}\text{C} - 110^{\circ}\text{C} (4 \text{ h})$	60°C - 110°C (1 5 h)	55°C - 110°C (6 h)
-Soak	110°C (4 h)	110°C (5 h)	110°C (5 b)
Ramn	$110^{\circ}C_{-}125^{\circ}C(A h)$	$110^{\circ}C_{-}125^{\circ}C(1h)$	$110^{\circ}C_{-}125^{\circ}C(1.5h)$
Soak	$125^{\circ}C(17h)$	125°C (16 h)	125°C (16 h)
Juan	123 0 (1/11)	123 (1011)	123 ((1011)

High Luminosity LHC

How does the CERN process differ from the LARP labs?

• Roped Cable in MQXFP 01 (mirror coil).

Insulation was removed and the cable was placed back in registration. Insulation repaired with 75 μm E-glass half wrap

Additional Insulation in MQXFP 01b practice coil

RXN complete

Additional Radial Insulation to mimic 2nd Gen QXF

tc no.11 [°C]

tc no.14 [°C]

Mould RE

Mould LE

MPORTANT

No fan

500

[] 실 400 Temperature | 00

200

100

Coil Heat Treatment

- **Equivalent duration** takes into account the estimated lag time.
- Multiple TCs locations • were tested recently by N. Bourcey for precise measurement of lag time.

- Coil Fabrication Summary & Overview
- Coil size and asymmetry
- Cable Expansion / Gap Closure
- Cross Section Analysis
- Conclusion

• Coils Best fit on the OD and coil Keyway.

- Coil Size = **L** + **R** = -237 μm
- Coil Asymmetry = $\mathbf{L} \mathbf{R} = +71 \, \mu m$

Coil Asymmetry and Size

High

HC

Luminosity

1.3

- Size and Asymmetry is **Tooling Dominated**.
- Add shim between form and mandrel blocks to account for tolerance buildup and create intimate contact between tooling components
- Fabricate additional modified form blocks and select blocks that are ~15 μm within center.

- Coil Fabrication Summary & Overview
- Coil size and asymmetry
- Cable Expansion / Gap Closure
- Cross Section Analysis
- Conclusion

Releasing the Tension

- LARP Coils Contract Less than CERN when 25 kg of tension is released
- For mechanical stability LARP braided insulation is tighter and initially constricts growth more

CERN coils LARP coils 0001001 0 Longitudinal contraction [%] 0.07% -0.05 Width Expansion: -0.1 Unconfined Cable 1.4% -0.15 0.03% LARP Cable 0.3% 0.17% -0.2 CERN Cable 0.1% -0.25 Heat treatment Curing -0.3 Tension released -0.35 Figure courtesy of E. Rochepault

Altering Expansion

- Both conductors expand similarly when unconfined.
- CERN insulation preferably constricts width growth

CERN coils LARP coils 101/101/02/PRP 200 RAP RAP ON 201 PH PAP PAP PAP PAP PAP PAP PAP PAP OF OF OF OF 0001001 0 Longitudinal contraction [%] 0.07% -0.05 -0.1 -0.15 0.03% 0.17% -0.2 -0.25 Heat treatment Curing -0.3 Tension released -0.35 Figure courtesy of E. Rochepault

Width Expansion: Unconfined Cable 1.4% LARP Cable **0.3%** CERN Cable **0.1%**

• Friction between coil and tooling also effects pole gap closure (# layers of mica, pressure between components..., *E. Cavanna*)

- Coil Fabrication Summary & Overview
- Coil size and asymmetry
- Cable Expansion / Gap Closure
- Cross Section Analysis
- Conclusion

• CERN coil 101, Turn location from Image analysis and edge detection

 LARP coil 1, Turn location from Optical Coordinate Measurement Machine

- Azimuthal Free Space
 - Layer 1: 690 $\mu m \rightarrow$ 470 μm in 2nd Gen QXF
 - Layer 2: 880 $\mu m \rightarrow 600 \ \mu m$ in 2nd Gen QXF
- Strong similarities between CERN and LARP
- Minor edge tends to shift toward midplane
- Major edge tends to shift toward pole

Free space mostly @ ID

Radial Free Space

.uminosity

High

- CERN 680 $\mu m \rightarrow 360 \ \mu m$ in 2nd Gen QXF
- LARP 600 $\mu m \rightarrow 280 \ \mu m$ in 2nd Gen QXF
- ID heater is nominally 200 μm from Cable
- Average distance is \sim 300 μm @ high field and \sim 700 μm in low field
- New Input parameters for Quench Models

2nd Gen MQXF S2-Glass

High

.uminosity

10-stack measurements of all insulation \rightarrow Tighter Material Control

- LARP/CERN has fabricated 13 coils short MQXF coils with arguably the highest success rate of any new high-field Nb₃Sn design.
- LARP/CERN is preparing for the **first full assembly test** at FNAL.
- Coil Size and Asymmetry should improve with slight tooling and fabrication adjustments.
- Cable insulation **Reduces Transverse Growth** causing large turn displacement and free space.
- The Inner layer heater is ~300 μm (~700 μm) in the High (low) field region rather than the designed 200 μm.
- Increased thickness and tighter measurement in 2nd Gen MQXF insulation should improve turn displacement and may improve inner PH delay times.

Spare Slides

Coil Heat Treatment

Amount of time Furnace, Retort, and Coil was within 5°C of the set point.

		48 h nom.	72 h nom.	72 h nom.
@210°C	(hours)	CERN	LARP	LARP
		103*	Coil 6	Coil 2
enter	PV	5.0 h	8.5 h	9.5 h
205°C	Coil	29.0 h		
	Retort		14.7 h	16.0 h
	witness		9.0 h	9.9 h
	delay	24.0 h	6.2 h	6.5 h
exit	PV	74.0 h	81.0 h	81.9 h
215°C	Coil	76.0 h		
	Retort		81.5 h	82.3 h
	witness		81.4 h	82.4 h
	delay	2.0 h	0.5 h	0.4 h
	Duration	47.0 h	66.8 h	66.3 h
Equivalent Duration			50.5 h	50.4 h
Witness Duration			72.4 h	72.5 h

		50 n nom.	48 n nom.	48 n nom.
@640°C		CERN	LARP	LARP
		103	Coil 6	Coil 2
enter	PV	143.5 h	142.0 h	142.2 h
635°C	Coil	151.0 h		
	Retort		142.5 h	142.8 h
	witness		142.1 h	142.1 h
	delay	7.5 h	0.5 h	0.6 h
exit	PV	201.8 h	190.6 h	190.5 h
635°C	Coil	202.6 h		
	Retort		190.7 h	190.6 h
	witness		190.6 h	190.6 h
	delay	0.8 h	0.1 h	0.1 h
	Duration	51.6 h	48.2 h	47.8 h
Equivalent Duration			41.9 h	41.6 h
Witness Duration			48.5 h	48.5 h

Max Tolerance

HQ02 Coil 17 and 20

Pole Gap Closure = 0.01%

Scans of HQ02

Effect of L – R on Field?

High

HC

Luminosity

- These estimates suggest that we need at least $\sim 100 \ \mu m$ of L-R accuracy to be within ± 1 unit
- Effect of several perturbations to QXF Field quality: <u>https://indico.fnal.gov/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=10554</u>

High

HC

Luminosity

• These estimates suggest that we need at least \sim 50 μ m of L+R accuracy to be within ±1 unit

MQXFS-AS, Estimated FQ

Nominal QXF cross sections are used for calculation at nominal current, 1746 A.

Coil C104 midplanes are pulled in 50 um

Coils L03 and L05 are left alone

High

HC

uminosity

Coil C103 and C105 are radially pushed in by 50 and 100 um respectively

Coil C104 midplanes are pulled in 50 um

Coils L03 and L05 are drawn out by 50 um

Coil C103 and C105 are pushed in by 50 and 100 um respectively

- HT, TC placement with N. Bourcey
- Cross Section analysis with E. Rochepault
- CMM / FARO with J. Ferradas Troitino
- Coil fab (impreg, materials) with E. Cavanna
- Splice equipment
- Curing setup
- Long coil fab
- 11 tesla
- (ROXIE with S. Izquierdo Bermudez)