

Civil Engineering :

Latest Layouts and Key Challenges

John Osborne GS/SE/FAS on behalf of Civil Engineering WP 17.1

5th Joint HiLumi LHC-LARP Annual Meeting : 27 October 2015

- Latest Layouts for civil engineering works :
 - LHC Point 1 ATLAS
 - LHC Point 5 CMS
 - Proposed contract strategy and planning for civil works

• Key challenges and lessons learnt from LHC civil works :

- Technical (unforeseen ground conditions, vibration impact on LHC, water ingress)
- Environmental (rock disposal, noise)
- Planning (Delay in Bld permits, vibration, revised LS2 schedule, installation windows for other CERN contractors)

Underground works at LHC Point 1 & 5

Underground works at Point 5

Emergency escape tunnel option

Vertical cores will be drilled down into LHC

High Luminesity LHC

Proposed site Boundary enlargement for civil works : Point 5 CMS

Surface Works at Point 5 CMS

Proposed site Boundary enlargement for civil works : Point 1 ATLAS

Surface Works at Point 1 ATLAS (2)

More detailed civil drawings are being prepared for design tenders

Proposed civil engineering contract strategy

- 2a : Architect contract for building permit submission (F)
- 2b : Consultants for detailed design of underground and surface
- 2c : Contractor for underground and surface works

John Osborne GS/SE/FAS

The main 'vibration' activities are driving the civil engineering planning 10 Chalk Clay; sand and clay **Results from Dr** Rock Hiller's (Arup) Sands and cobbles studies - Vibration Full Face TBAA from tunnelling Roadheaders will be used for excavation Hydraulic hammer ultant ppv (mm/s) 0.2 mm/s 2x10⁻⁴ m/s 200µm/s ^{I roadheader} wei installation 0.1 EPB shield owell installation Ring erection •••••• minitunnel TBM face At 45m, tunnelling vibration would give ~200µm/s peak ull face TBM More testing planned with EN/MME 0.01 10 100

Distance from face (m)

45m

uminesi.v

Proposed civil engineering planning

HL-LHC schedule for LHC P1 and LHC P5

	2015		2016		2017	2018	2019 2020			2021 2022		2023	2024	2025		2026
	Q1 Q2 Q3	Q4 Q	1 Q2 Q3	Q4 Q1	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q1	Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q	2 Q3 Q4	Q1 Q2 Q3 Q4
LHC Operation period	LS1						L	S2							LS3	
CERN feasibility/integration study																
Site investigation																
Construction management contracts / Detailed design		Tender for designers Preliminar Tender					ment				$\left \right $	Civil engir - consi servi	ieering ultancy ces			
			y design	Design) _									con	conti	tracts
Underground Construction					► Tender for	Shaft	Excavations (vibration)		Con	Concreting/finishing			LHC cores]	Cons	onstruction
Surface Construction					contractors		←	(Buildings	handov	ver to be def	ined)*				conti	acts

*Civil engineering only (fit-out with services and equipment occurs after these completion dates)

John Osborne GS/SE/FAS

• Key challenges and lessons learnt from LHC civil works :

- Technical (e.g. unforeseen ground conditions, vibration impact on LHC, water ingress)
- Environmental (e.g. rock disposal, noise)
- Planning (Delay in Bld permit, vibration, revised LS2 schedule, installation windows for other CERN contractors)

Technical Challenges : CMS ground freezing : 1998-2000

Ground Freezing for shaft excavation

Higher than expected groundwater velocities between shafts

THE R

1.2

For HL shaft at CMS we will study Diaphragm Walls

Good Site Investigation records are essential

Test drilling for new shaft at LHC Point 5 CMS

Environmental Challenges : Rock disposal

All LHC rock was used for landscaping "onsite"

LHC access road for CE works

Environmental Challenges : Noise disturbance

Planning (Delay in Bld permits, vibration, revised LS2 schedule, installation windows for other CERN contractors)

		1998	1999	2000	2001	2002	2003	2004		
ID	Task Name	J F M A M J J A S O N D	JFMAMJJASOND	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	JFMAMJJASOND	J F M A M J J A S O N D J F		
1	POINT 1 MEYRIN									
2	ATLAS experimental area	¥/////////////////////////////////////								
3	RZ tunnel enlargements					\$ <u>111111111111111111111111111111111111</u>	2222			
4	Surface Buildings	\$1111111111111111111111111111111111111								
5	POINT 1.8 PREVESSIN									
б	Surface Buildings		<u> vaaanaa aanaa aanaa</u>	20						
7	POINT 2 SERGY									
8	ALICE (UP25)				2222					
9	RM and UJ tunnel enlargements				\$ <i>111111111111111111111111111111111111</i>	7////2				
10	Surface Buildings				LED DIGMANTLING	<i></i>				
11	POINT 4 ECHENEVEX				CEP DISINANT CITY					
12	Surface Buildings				7772					
13	POINT 5 CESSY									
14	CMS experimental area	2 <i>000000</i>								
15	Surface Buildings (1ére phase)									
16	Surface Buildings (2éme phase)									
17	POINT 6 VERSONNEX									
18	Beam dumps (incl. RM)				<u></u>					
19	Surface Buildings	DI								
20	POINT 7 ORNEX		DFERIMIT							
21	RZ tunnel enlargements	AP	PROVALS							
22	POINT8 FERNEY-VOLTAIRE									
23	Headwall and shilding wall in UX85									
24	Surface Buildings				hannannannannannannannannannannannannann					
25	TI2 - Injection tunnel	2//////					222			
26	TI8 - Injection tunnel	20000					22			

LHC AS-BUILT CIVIL ENGINEERING PLANNING

Planning challenges : Intervention windows for 'other' contractors

Precast Concrete lift modules in shaft

Metallic staircase in shaft for services

Thank you for your attention

John Osborne GS/SE/FAS on behalf of Civil Engineering WP 17.1

5th Joint HiLumi LHC-LARP Annual Meeting : 27 October 2015

HL-LHC at Pt.5: <u>SURFACE BUILDINGS</u> (hypothetical surface arrangement)

TRANSPORT SIDE, WITH NEW SHAFT

Shaft positions have moved many times during 2015

Shaft positions have moved many times during 2015

General Infrastructures Services Department

HL-LHC: <u>SURFACE BUILDINGS (</u>Underground Option). New layout proposition

Few considerations..

- Worksite Access
- New buildings and related area are close to the CESSY Village (<u>Environmental</u> <u>Impact ?</u>);
- The expansion area identified is in an open field, <u>within</u> CERN domaine, partially used as landfill in the past;
- Soil level is higher compared to the average CMS site level;
- New fenced area
 (~10'000m2) increases by
 ~23% the current perimeter.

18/06/2015

J. Osborne, M. Manfredi, GS-SE-FAS

05

Existing Structures

Peak particle velocity refers to the maximum speed of a particular particle as it oscillates about a point of equilibrium that is moved by a passing wave. It is a term used to describe vibration, or elastic movement, resulting from excitation by seismic energy as it passes a particular point.

Scope of work - Task 1: Roadheader data

Task 1: Roadheader Vibration Support

- → Investigate roadheader suppliers
- \rightarrow Case studies

 \rightarrow Potential vibrations and impacts on the LHC from the HL-LHC tunnelling works

Nota: need to know understand tolerable limits along the LHC.

 $PPV = 2* \pi * f * A$ With PPV = Zero-to-Peak, or Peak Particle Velocity (Units: m/sec, mm/sec) f = Frequency (Units: Hertz) A = Zero-to-Peak, or Peak Displacement (Units: m, mm) i.e. for 1 µm: Frequency Amplitude PPV Frequency Amplitude PPV 1 mc.cale.chore.lbased on preent mode of operation of the machine without orbit

