

Pileup and bunch length/time structure

- Pileup and detector configurations
- Performance as a function of pileup:
 - Primary vertex finding
 - b-tagging
 - Variation with bunch length for PV and b-tagging
 - [e/γ/μ/τ]
 - Jets and E_T^{miss}
 - Pileup mitigation with tracking information
 - First prospects using timing information
- Conclusions and outlook

Pileup values

- Aim to upgrade the detectors to maintain the same or better performance with HL-LHC levels of pileup
- Luminosity of 5 (7.5) $x10^{34}$ cm⁻²s⁻¹ corresponds to *average* pileup, μ , of 140 (200) events per bunch crossing
 - Rounded up a few % to reflect variation from bunch-to-bunch
 - Simulation then includes Poisson fluctuations around the mean
 - Typical Run 3 (= Phase I) value expected to be around 50
- Pileup mitigation a critical element of detector designs
 - ATLAS and CMS scoping documents include performance comparisons at these two μ values
 - ATLAS [CERN-LHCC-2015-020], CMS [CERN-LHCC-2015-019]
- The scoping documents extend previous studies:
 - ATLAS Phase II LoI [CERN-LHCC-2012-022],
 CMS Technical Proposal [CERN-LHCC-2015-010]
 - Links to additional public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies-
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP
 ECFA HL-LHC workshop 2014: https://indico.cern.ch/event/315626/
 https://indico.

Detector configurations

- Both experiments have made full simulations of their Phase II detectors to study performance. Caveats:
- Trackers
 - Pixel detectors extended to $|\eta| = 4.0$ (ATLAS), 3.8 (CMS)
 - For both, there will be a further reduction in pixel size (i.e.
 improvement in resolution) compared to the present simulations,
 and further optimisation of the layout
- Calorimeter upgrades
 - CMS will fully replace the end cap calorimeter (1.5 < $|\eta|$ < 3.0), with precise timing information from each layer, plus improved timing information in the barrel region
 - ATLAS propose a high granularity timing detector between the barrel and endcap LAr calorimeter cryostats $(2.4 < |\eta| < 4.3)$
 - For both experiments, the timing aspects are not yet fully integrated in simulation and/or reconstruction algorithms
 - ATLAS may also replace the forward calorimeter $(3.2 < |\eta| < 4.9)$

Tracking extended to large | n |

- Pion tracking efficiency in ttbar events for ATLAS full and reduced scenarios, PU of 200
- Tracking efficiency with η extension in CMS for 140 PU or 200 PU

- For both experiments, fake rates are well under control
- Muon tracking efficiency is uniformly high (about 99%)

Primary vertex finding

- ttbar events reconstructed with the CMS Phase II detector
- rms resolution 11µm for this high multiplicity hard-scatter process
- Efficiency for picking the right vertex about 98% (96%) for μ =140 (200)

Pippa Wells, CERN Pileup Mitigation

Effect of a longer beam spot

- Both experiments have investigated different longitudinal (z) beam spot profiles.
 - Gaussian with σ=5cm
 - Long beam spot, ~flat to ±11cm, falling off to ±15cm
- ATLAS tracker required to be hermetic for vertices in ±15cm
- CMS tracker optimised for hermeticity over ± 7cm, with no performance degradation seen out to ±11cm

Effect of varying PU and beam spot shape

- Hard scatter reconstruction efficiency for ttbar events
- Non-optimised algorithms, larger pixel sizes than now planned
- Gaussian beam spot,
 σ=5cm, μ [80,140 ... 300]

- Gaussian σ=5cm or long beam spot, μ=140: about 1% higher efficiency for long beam spot
- Much less difference for μ=80
- (No samples were made yet with long beamspot, µ=200)

b-tagging

 Efficiency to tag a b-jet from ttbar decay vs the light-jet misid probability (for events with correct PV identified)

- µ=140
- $\mu = 200$
- μ =50 (Phase I)
- Phase II detector gives useful performance up to |n|<3.0
- Few % decrease in b-tag efficiency for fixed misid rate going from 140 to 200

b-tagging - beam spot shape

- b-tagging degrades gradually with higher μ (left plot)
- If the correct PV is selected, the b-tagging is insensitive to the beam spot shape (right plot)
 - Plots using the LoI detector averaging over $|\eta| < 2.5$
 - (Exact results sensitive to layout, tracking algorithms, jet energy scale. No tests made yet with μ =200, long beamspot)

Light-jet rejection

- NB: rejection = 1/(misid-prob)
- Non-optimised algorithms from Run 1

e/γ/μ/τ performance

- Muon track finding has high efficiency for ATLAS and CMS
 - Matching to muon spectrometer is only weakly affected by pileup
 - Isolation variables need corrections for pileup contribution
- Work is in progress to optimise $e/\gamma/\tau$ algorithms
 - Some degredation of id efficiency and resolution with pileup
- Example: τ efficiency and fake vs. number of events from CMS
 - Efficiency reduced if constant fake rate is chosen

Jets and pileup

• Particles from pileup events make a significant contribution to the jet energy of true low $p_{\scriptscriptstyle T}$ jets

Pileup events can also produce additional QCD-like jets (usually at low p_T), and jets from random combinations of particles from several

<Offset>[GeV]

pileup events

 Plot shows additional energy from pileup overlaid on low energy QCD jets with radius 0.4 in η-φ space

- Reconstructed jet energy depends on detector specific algorithms
- Jet energy scale correction applied to estimate true jet energy

Pileup jet suppression with tracks - ATLAS

 Use a tracking variable, R_{pT}, to distinguish between hard-scatter and pile-up jets. Sum over tracks in the jet which come from the hard scatter PV

$$R_{pT} = \frac{\Sigma_i(p_{\mathrm{T}}^{\mathrm{track},i})}{p_{\mathrm{T}}^{\mathrm{jet}}}$$

• Scan value of R_{pT} to find efficiency for PU vs. HS jets (40-50 GeV jets shown)

Pileup jet suppression with tracks

 Example: R_{pT} cut selected to keep <2% PU jets (μ = 200)

- CMS uses particle flow objects to make optimum use of track and calorimeter information
 - PUPPI algorithm to evaluate the weight for each PF object to be from hard-scatter or pileup event
 - Resolution improved by extended tracker coverage

Use of precision timing information

- CMS end cap calorimeter will include precise timing information from active layers
 - Intrinsic ToT jitter expected to be 50ps per measurement. (Many individual measurements in a jet).
- ATLAS plan a high-granularity timing detector in front of the existing end-cap calorimeter
- In the forward region, a precise timing measurement with 20-30ps resolution gives about 1cm resolution on z(vertex)
 - Typical jet: 55% charged particles, 30% photons (from π^0 decay), 15% neutral hadrons (neutrons and K^0)
 - Timing information for neutral particles is complementary to vertex position information from tracking
 - Time of flight for lower energy charged particles is also affected by the path length. (Bending in axial magnetic field → longer path length. More significant in the barrel region)
 - In Run 1, the spread of collision times was about 220 ps

ATLAS high granularity timing layer

- Standalone analytical study assuming the crab-kissing scheme
 - Time spread of collisions depends on angle ψ . Plot shows particle time w.r.t. times from known hard scatter position.
 - With a simple algorithm, 90% efficiency for HS jets while retaining about 10% of pileup jets
 - Combined algorithm using tracking and timing to be studied
 - Use of relative timing of contributions to a jet to be studied

Normalized Number of Particles

Pippa Wells, CERN Pileup Mitigation 16

CMS studies with precise timing

- Reconstructed time for PFlow objects assuming new detector element with 50ps resolution
- Signal charged pions/photons and pileup photons

- Sum ET of PFflow photons for VBF H→γγ events
 - No pileup (red/blue)
 - Pileup 140 no time cut
 - Pileup 140 with time cut

Pippa Wells, CERN Pileup Mitigation 17

CMS E_Tmiss

 Apparent E_T^{miss} in Z/γ*→μμ events, largely due to measurement of the recoiling hadronic system and pileup contributions

- No tracker extension
- With tracker extension

- E_T^{miss} resolution: the component of the hadronic recoil perpendicular to the Z direction in Z→µµ events
 - PU 140
 - PU 200

Events/5 GeV

E_Tmiss with extended tracker - ATLAS

- E_T^{miss} resolution improves if tracking information is available for $|\eta| < 4.0$ compared to 3.2 or 2.7
 - Degradation with pileup is also strongly reduced
 - Dominant effect is from rejection of pileup jets
 - Small additional contribution from improved estimate of soft term

Conclusion and outlook

- Improved understanding of pileup mitigation from recent studies
 - Relative performance with μ =140 and μ =200 evaluated. Improvements from optimised layouts and algorithms expected
 - Tracker extensions in η are a vital element
 - First results on the impact on physics analysis precision available. More in the pipe line. Optimum choice is analysis dependent.
- Tracking/vertex finding as a function of bunch length/shape
 - First indication from ATLAS was that long-flat bunch does not bring much benefit. Vertices may be merged if they are within a few 100 μm. Despite this, hard scatter PV resolution is 10-20 μm
 - Studies of an even longer beam spot have started in CMS
- Fully accounting for shape of luminous region in time and space (z,t) is in active development for precise timing detectors
 - From the machine side, which scenarios are plausible? (eg. Max length, variations in time structure, prospects for crab kissing)
 - Experiments could then give additional feedback on the time scale of Autumn 2016 (possible ECFA workshop)