

High Order Corrector Magnets Status

F. Alessandria, G. Bellomo, F. Broggi, A. Paccalini, D. Pedrini, A.Leone, V. Marinozzi, M. Quadrio, M. Sorbi, M. Statera, M. Todero, C. Uva, G. Volpini *INFN Milano, LASA Lab.*

> P. Fessia, A. Musso, E. Todesco CERN

Presented by Giovanni Volpini

HiLumi General Meeting, CERN, 30 Oct 2015

1. Magnet features & Sextupole Manufacture Status

- 2. The magnet protection
- 3. A parallel development

MAGIX & INFN participation to HL-LHC

MAGIX

WP1	CORRAL	Design, construction and test of the five prototypes of the corrector magnets for the HL interaction regions of HiLUMI
WP2	PADS	2D & 3D engineering design of the D2 magnets
WP3	SCOW-2G	Development of HTS coil for application to detectors and accelerators
	CAFEO	Low-loss SC development for

CERN-INFN Collaboration Agreement

CERN endorses MAGIX WP1 & WP2 deliverables and milestones through the collaboration agreement KE2291/TE/HL-LHC

MAGIX is a INFN-funded research project, whose goal is to develop superconducting technologies for application to future accelerator magnets. It includes four WP's, two of which are relevant to HL-LHC 2014-2017 2

INFN already involved in FP7-HiLumi (**UE-HILUMI**, GrV) *WP2 beam dynamics, LNF WP3 magnets, MI-LASA WP6 cold powering, MI-LASA*

The superferric design was chosen for ease of construction, compact shape, modularity, following the good performance of earlier corrector prototype magnets developed by CIEMAT (Spain).

LHC vs. HL-LHC corrector magnet comparison chart

MAGIX

				L	HC			HL-LHC												
Order	Туре			Aperture	Stored energy	Operating Current	Inductance	Aperture	Stored energy	Operating Current	Integrated field at r=50 mm	Magnetic Length	Differential Inductance @ Iop							
				mm	[]	[A]	[mH]	[mm]	[k]]	[A]	[T.m]	[m]	[H]							
2	S	MÇ	SX	70	2,116	550	14	150	24.57	182	1.00	0.807	1.247							
3	N	MCSX	MCSTX	70	39	100	4.7	150	1.28	132	0.06	0.111	0.118							
3	S	MCSSX		70	6	50	7.8	150	1.28	132	0.06	0.111	0.118							
4	Ν	мсох	MCSOX	70	16	100	4.4	150	1.41	120	0.04	0.087	0.152							
4	S	MCOSX		70	22	100	3.2	150	1.41	120	0.04	0.087	0.152							
5	Ν							150	1.39	139	0.03	0.095	0.107							
5	S							150	1.39	139	0.03	0.095	0.107							
6	Ν	МСТХ	MCSTX	70	94	80	29.2	150	4.35	167	0.086	0.430	0.229							
6	S							150	0.92	163	0.017	0.089	0.052							

Giovanni Volpini, HiLumi Annual Meeting CERN, 30 Oct 2015

5

Coil Design

Bruker-EAS NbTi for Fusion application Fine filaments ITER PF wire Wire type 2 Cu:NbTi ≈ 2.30 Number of filaments 3282 Filament diameter $\approx 8 \ \mu m \ @ 0.73 \ mm$ Two wire diameters: **0.5** and **0.7 mm** S2-glass insulation.

Insulation scheme:

-wire w/ S2 glass 0.14 mm thick (on diameter)

-ground insulation:

G11, 2 mm thick plates on both sides of the coil, including the wire exits

G11 thin, flexible layer on the inner wall of the coil; S2 tape on the outer wall

To identify a new, radiation resistant, material for the ground insulation

Coil winding & impregnation

Sextupole Coils Manufacture

Giovanni Volpini, HiLumi Annual Meeting CERN, 30 Oct 2015

10

		Mean Value	Minimum & Maximum	Standard deviation
Ground insulation @ 5 kV	TΩ	1.5	0.8-2.0	
Coil Resistance @ 19.2 °C	Ω	9.982	9.973- 9.987	0.007
Coil Inductance	mH	8.587	8.570- 8.613	0.05

Coil manufacture tolerances defined.

Teflon coating not suitable for

this application (high wearing)

New releasing agent tested

QC plan being established.

and selected.

All coils Mould 1 Mould 2 [mm] [mm] [mm] 88.64±0.16 Α 88.76±0.07 88.50±0.10 70.31±0.04 70.24±0.02 В 70.28±0.05 С 132.48±0.17 132.58 ± 0.09 132.35±0.16

 114.08 ± 0.12

114.07±0.11

Coil Assessment

 114.06 ± 0.13

D

Single Coil Sample Holder

Goals:

 To test a coil in "realistic" conditions to identify major faults in the design/assembly;

2) To commission the "small" magnet test station, to be used to test sextupole, octupole and decapole

Test results

First test at 4.2 K

Current increased by steps at 0.3 A/s. Quench induced with heaters at 90, 160, 200 and 220 A. Ramp up to 260 A (no quench induced at this current value by choice). **No spontaneous quench occurred.**

Test at subcooled LHe

325 A (2.85±0.06 K) or 91%

Significant heat load in the bath prevents from reaching a temperature lower than 2.5 K. Main reason is the thermal shield, whose temperature decreases very slowly. Current ramp up to quench.

Four training quenches occurred at 295 A (2.56±0.04 K) or 80% of the s.s. at this *T* 318 A (2.60±0.04 K) or 87% " 329 A (2.72±0.05 K) or 91% "

w

The magnet operates at 40% on the load line

Training at 4.2 K

Current ramp up to quench at 0.3 A/s First quench at 280 A, then repeated increasing the ramp rate up to 5.7 A/s (limited by power supply in this configuration). In total **14 quenches at 280 A**, or 95% of the s.s. limit.

E.M. Forces

A magnetic plate creates along the normal of the coil plane an e.m. force pattern more resembling to that experienced by a coil during its operation inside the magnet.

Fx (normal to the coil plane, half coil)	2.9 kN @ Iop,	here reached at about	300 A
Fy (normal to long axis, half coil)	1.5 kN @ Iop,	w	250 A
Fz (normal to long axis, half coil)	0.6 kN @ Iop,	w	180 A

Assembly sequence: I

1. Magnet features & Sextupole Manufacture Status

2. The magnet protection

3. A parallel development

Magnet Protection general considerations

We assumed a «traditional», conservative, approach for the magnet protection. Present CS's are based on this.

-energy extraction on an external resistor dump assumed, following a quench detection;

- $-V_{dump}$ fixed at 300 V;
- -No quench heater.

Cost & space issues led to some suggestions (which I could not refuse...): i Rely as much as possible to PC crowbar, limiting voltage to 50 V; ii Try to match operating currents to exsisting PC's, (180-130 A to less than 120 A, including some margin)

Workplan

- Verify whether the 4-pole (most critical) in its present design can be protected in a passive way;
- Perform a partial redesign, lowering the operating current below 120A. This leads to an increase of the inductance and making protection more critical. Passive protection is verified again.

Magnet Protection model assumptions

Quench simulations with QLASA were performed, with following assumptions:

We assume that the PC has an output voltage compliance of 12 V; when this is reached, we do not trip the PC, which continues to provide a fixed voltage. This is justified later, and allows to drop any hypothesis on the reaction time.

Magnet Protection the Quadrupole case

MCQSX Temperature rise MCQSX Current decay
Peak Temperature [K]

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00</td Current [A] 0,5 1,5 0,001 0,01 0,1 Time [s] Time [s] **MCQSX** resistive voltage **MCQSX** Resistance Resistance $[\Omega]$ Voltage [V] 0,5 1,5 0,5 1,5 Time [s] Time [s]

Giovanni Volpini, HiLumi Annual Meeting CERN, 30 Oct 2015

Magnet Protection the Quadrupole case II

			QLASA v _q finite PC at VL=12V	v _q infinite No external dump	v _q infinite External dump with Vmax=300V	v _q infinite External dump with Vmax=50V
Peak temperature	К		108	98	74	94
Energy dumped into coil vs. stored energy	-		103%	100%	50%	90%
Final resistance	Ω		9.5	8.7	4.4	7.9
Max voltage between a coil (internal) end and ground	V		507	490	340	420

We are close to the case of infinite quench velocity (v_q), one whole coil is quenched

Magnet Protection Conclusions

Quadrupole seems, in its present design, well protected simply limiting the PC output voltage. Energy extraction with 300V would help, but it is not necessary. Little use of a 50 V dump.

To be confirmed with the new, low current, design.

Other magnets should be less critical, but this too must be confirmed

Caveat artifex! This result depends on a computed longitudinal and transverse quench propagation speed. To be cross-checked with experimental results

Updated Design

The CS magnet designs are now revised to set the maximum operating current below 120 A, to comply with the exsisting power converters.

For the magnets from sextupole to dodecapole we will simply increase the number of the turns, modifying the iron shape to have more room, and keeping the same 0.5 mm dia wire. The load line margin becomes larger than 60%.

For the quadrupole, we could consider to use either the 0.5 mm wire, or the 0.575 mm dia wire manufactured by Luvata Pori, already procured at LASA (but to be insulated).

1. Magnet features & Sextupole Manufacture Status

2. The magnet protection

3. A parallel development

MgB₂ development

The pursuit of new solutions based on innovative superconducting materials and/or design solutions, would represent an interesting scientific added value

We are working on an innovative solution, first proposed in '74 by Malychev, that we call Round Coil Superferric Magnet (RCSM)

Simple, circular coil shape, cost effective.

Expecially suited to strain-sensitive materials, like MgB_2

We consider a sextupole configuration; different multipoles may be realized replacing the iron

Preliminary design in progress.

Work done at CERN with Juho Rysti

Saturation Effect

The End

Δ rule (symmetry) changer

No matter how a sextupole magnet is done, it is invariant by a 120 degree rotation. A 60 degree exchanges the "north" and "south" poles; if we reverse the current direction as well, the field is globally unchanged!

A RCSM is invariant by 120 degree rotation. A rotation by 60°, amounts to a "mirroring" w.r.t. a plane normal at z-axis, at z=0. No change in current.

No overall mirror symmetry.

This difference of the symmetries has profound consequences on the harmonics properties: a "traditional" layout has no even ("forbidden") harmonics, and no net solenoidal field; a RCSM has also even harmonics, that vanish when integrated from $-\infty$ to $+\infty$, and a net solenoidal field. More complex configurations may suppress the latter, at the price of net even harmonics.

Old & Older

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 20, NO. 3, JUNE 2010

A Novel Design of Iron Dominated Superconducting Multipole Magnets With Circular Coils

Vladimir Kashikhin

Abstract-Linear accelerators based on superconducting magnet technology use a large number of relatively weak superconducting quadrupoles. In this case an iron dominated quadrupole is the most cost effective solution. The field quality in this magnet is defined by iron poles; the magnet air gap is minimal as are coil ampere-turns. Nevertheless, it has long racetrack type coils, which must be rigid and fixed by a mechanical structure to provide the needed mechanical stability. The novel concept of using circular superconducting coils in such a quadrupole type is described, with a discussion of quadrupole parameters, and results of 3D magnetic designs. Variants of short and long sectional quadrupoles and multipoles are presented.

MAGIX

INFN

Index Terms-Accelerator magnets, coils, iron, magnetic fields, superconducting magnets.

I. INTRODUCTION

C EVERAL Linear Accelerators based on superconducting technology now are under design and construction [1]-[3]. These machines use various superconducting magnets to provide particle beam steering and focusing. The main beam focusing element is a superconducting quadrupole mounted inside a cryomodule between SCRF cavities [4]-[6].

Fig. 1. Iron dominated quadrupole with circular coil.

многополюсная

Изобретение относится к устройствам для магнитной фокусировки заряженных частиц, в частности к квадрупольным и многополюсным магнитным линзам.

Известны квадрупольные и многополюсные линзы, содержащие полюса гиперболического или цилиндрического профиля, магнитопровод и обмотки, расположенные на каждом полюсе. Известные линзы сложны по конструкции, так как число их обмоток равно числу полю-

сов. Особые трудности возникают при выполнении таких линз со сверхпроводящими обмотками.

Целью изобретения является упрощение конструкции линзы.

Предложенная магнитиая линза отличается тем, что она имеет одну обмотку независимо от числа полюсов, расположешную коаксиально магинтопроводу, причем ось обмотки совпадает с осью линзы, а полюса выполнены в виде Г-образных тел, попеременно с разных сторон закрепленных на магнитопроводе.

На фиг. і показана предложенная линза; на фиг. 2 и 3 - конструкции из предложенных

Giovanni Volpini, HiLumi Annual Meeting (Inter Boldwart Sepana) of town 1 15 ки 3 совпадает с осью линзы, обмотка расположена коаксиально магнитопроводу 4. По-

люся 1 и 2 выполнены съеминии

Buch 1

 Two magnets with mirror orientation, and reversed current (RCSM2).

It possesses reflection symmetry w.r.t. a plane normal to z-axis, but –surprisingly- it has no other symmetry (apart from 120° for sextupole).

Therefore $\int_{-\infty}^{+\infty} B_z dz = 0$ so not net z-component

But it turns out that its <u>harmonic content is very high</u>, lacking those symmetries which "cancel" specific harmonics.

Schedule

HiLumi-MAGIX schedule							2014	L I						201	5							2	2016						201	7				
			v. February 2014	1	2 3	4 5	67	8	9 10 1 [.]	12	12	3	4 5	6 7	7 8	9 1	0 11	12	1	2 3	4	5 6	67	8	9 10	11 1	12 1	2	3	4 5	6	78	9	10
WP0		F	Project Management				-i																											
	M 0.1	Feb 2014	Kick-off meeting with specification transfer																								_							
	M 0 2	Dec 2014	1st year activity monitoring							Ć																								
	M 0 3	Dec 2015	2nd year activity monitoring				- F			Ĭ								C																
	M 0.4	Dec 2015	2nd year activity monitoring				1.1																			in in	\frown							
	M 0.4	Dec 2010																							_	_	4		a de la comunicación de la comun			\		
	W U.5	Jun 2017	4th year activity monitoring											-i													_	-		-		,		
WP1			CORRAL											Ī																				
	M 1.1	Jul 2014	Sextupol engineering design.					\mathbf{O}																										
	M 1.2	Dec 2014	Sextupol construction.							Q		N		- i-																				
	D 1.1	a Mar 2014 *	Preliminary 2D design of the five magnet types																															
	D 1.1	b Mar 2015 *	Preliminary 3D design of the five magnet types														<u> </u>										_							
	D 1.:	2 Oct 2016	Executive design of the five magnet types						_								\diamond																	
	M 1.3	Dec 2015 **	MgB2 quadrupole design.	_														Ç)															
	M 1.4a	Mar 2016 **	* Octupole and decapole construction	_										-1									-											
	M 1.40	Jul 2016 **	Quadrupole and dodecapole construction																															
	M 1.5	Oct 2016	MigB2 quadrupole construction	_			- 5						\frown					-	_							_								
	WII.0a	Apr 2015	Test of the setupole and desanals	_									V					-					(
	M 1.60	Eob 2017 ***	Test of the dedecapele and decapele	_																						in the second								
	NI 1.00	Peb 2017 3 Mar 2017	Corrector magnet test report	_																	_						_							
	D1.	4 lune 2017	Corrector magnets final check _ packing and transport	to CE	RN		t i																						Y	a a a a a a a a a a a a a a a a a a a		\		
	51.		Corrector magnets final check, packing and transport											1																		r .		
WP2			PADS											Å																				
	M 2.1 D 2.1	1 June 2015	2D magnetic design to minimize the cross talk betwee	n the ty	wo dipo	oles.								0																				
	M 2.2 D 2.2	2 Dec 2015	2D mechanical design.											1			,		5															
	M 2.3	Feb 2016	3D magnetic design including the coil ends.															Ĭ		O														
	M 2.4	Apr 2016	Quench preliminary analysis.											12													_							
	M 2.5	Jun 2016	3D mechanical design with the axial pre-load study.				i i																Ó											
	M 2.6 D 2.3	3 Dec 2016	Final Engineering design.																								Ø							
														_																				
Notes	Those two delive	arables are group	ed in one in the MAGIX project			Expla Activi	anation	n																										
**	Note the change	of scope wrt to t	he MAGIX project			ACUVI	y																			++								
***	These two miles	tones are droupe	d in one in the MAGIX project			Miles	tone		\mathbf{O}																									
****	These two miles	tones are groupe	d in one in the MAGIX project						-																									
		toneo aro groupo				Delive	erable .		۵.				-		_																			
			Giovanni Volpini, HiLi	umi	An	nu	al	Me	etin	ġ (ĴĒ	۲N	, 3	0 (C	t 2	01	.5												3.	5			