

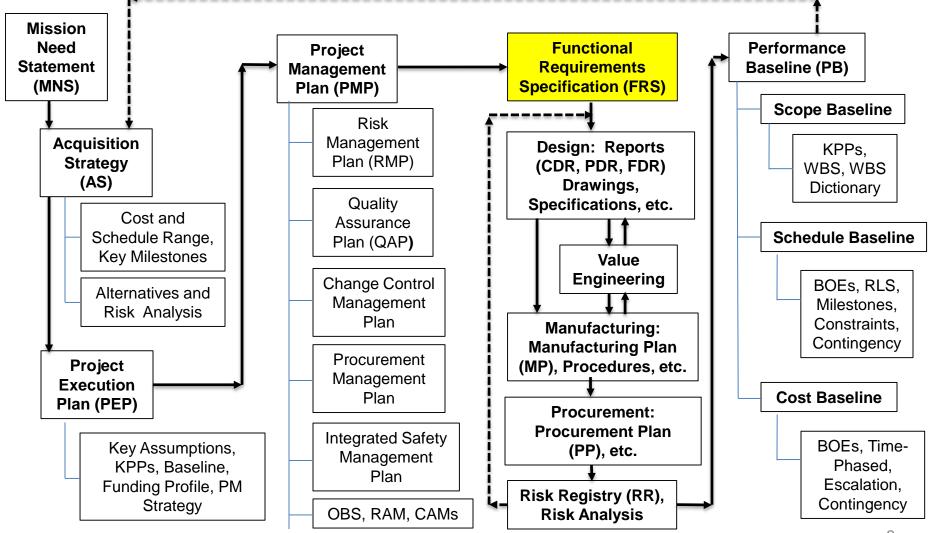


#### **MQXFA Functional Requirements**

Ruben Carcagno October 30, 2015






#### **Functional Requirements**

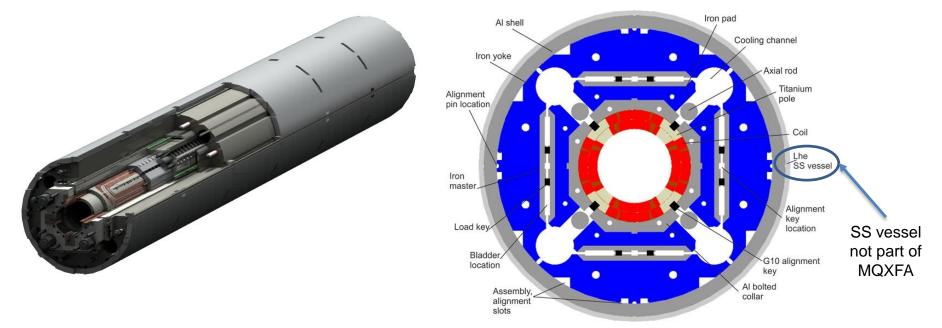
- A clear specification of functional requirements for U.S. deliverables is needed to support the DOE Order 413.3B project management process for the US-HiLumi project
- These requirements should not be embedded in other documents (e.g., design reports) or mixed with requirements for other systems
  - Functional requirements for the U.S. project deliverables should be documented in a stand-alone document
  - These requirements should be such that their verification means that the project deliverable(s) are fit for the intended use
    - They do not include design parameters, only the <u>functions</u> that the deliverable must satisfy
  - Functional Requirements must be reviewed and approved by the end user (CERN), well in advance of the project baseline establishment for the CD-2 DOE review
    - A signed document should be finalized in less than a year from now



LARP

# Main Project Planning Documents




High







• This presentation is for the MQXFA functional requirements for Q1 and Q3 only:



- The MQXFA magnets for Q1 and Q3 are assumed to be identical
- A separate, similar functional requirements document is also available for the Q1, Q3 Cold Mass Assembly (LMQXFA/B)





| 211 Geneva 23<br>zerland                                  |                                                                        | C-LQX-ES-0002 rev 1.1<br>/Group or Supplier/Contractor Document No.<br>TD/FNAL/USA                                               |
|-----------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Large<br>Hadron<br>Collider                               |                                                                        | EDMS Document No.<br>256806                                                                                                      |
| project                                                   |                                                                        | Date: 2001-04-2                                                                                                                  |
|                                                           | UNCTIONAL Specifica                                                    |                                                                                                                                  |
|                                                           |                                                                        |                                                                                                                                  |
| of these elements form the<br>8. Since the elements are i | Q2 inner triplet optical element<br>identical whether installed at the | ne MQXB quadrupole magnets.<br>It at interaction regions 1, 2, 5<br>It low luminosity or high<br>the magnet design are identical |

- Example of a previous
  FRS for the present Inner
  Triple Quadrupole MQXB
  for Q2
- Some parameters for MQXFA FRS were taken from the MQXB FRS, but they need to be confirmed by CERN





#### **MQXFA FRS**

https://us-hilumi-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=36

| U.S. High<br>Luminosity<br>LHC                                                                                        | MQXFA Magr<br>Functional Requirements                                                                                                                                                                                            |                                                                                                              | US-HiLumi-doc-3<br>Date: May 7, 2015<br>ion Page 1 of 20                                                                                                             |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                       | U.S. DEPARTMENT OF                                                                                                                                                                                                               | Office Science                                                                                               | of<br>e                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                       | U.S. <u>HiLumi</u> P                                                                                                                                                                                                             | roject                                                                                                       |                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                       | MQXFA MAGI                                                                                                                                                                                                                       | NETS                                                                                                         |                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                       |                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                                                                      |  |  |  |  |  |
| FUN                                                                                                                   | CTIONAL REQUIREMEN                                                                                                                                                                                                               | TS SPEC                                                                                                      | FICATION                                                                                                                                                             |  |  |  |  |  |
| FUN                                                                                                                   | CTIONAL REQUIREMEN                                                                                                                                                                                                               | TS SPEC                                                                                                      | FICATION                                                                                                                                                             |  |  |  |  |  |
| Prepared by                                                                                                           | : Date:                                                                                                                                                                                                                          | TS SPEC                                                                                                      | Contact<br>ruben@fnal.gov                                                                                                                                            |  |  |  |  |  |
| Prepared by<br>Ruben Carc<br>Reviewed by                                                                              | : Date:<br>agno, US-Hilumi Project Engineer<br>r: Date:                                                                                                                                                                          | Organization                                                                                                 | Contact<br>ruben@fnal.qov<br>(630) 840-3915<br>Contact<br>giorgios@fnal.gov                                                                                          |  |  |  |  |  |
| Prepared by<br>Ruben Caro<br>Reviewed by<br>Giorgio Ambr<br>Reviewed by                                               | : Date:<br>a <u>ano, US-Hilumi Project Engineer</u><br>c: Date:<br>osio, US- <u>Hilumi</u> MQXFA L2 Manager<br>c: Date:                                                                                                          | Organization<br>FNAL<br>Organization                                                                         | Contact<br>ruber@fnal.gov<br>(630) 840-3915<br>Contact                                                                                                               |  |  |  |  |  |
| Prepared by<br>Ruben Caro<br>Reviewed by<br>Giorgio Ambr<br>Reviewed by<br>Ezin Todesor<br>Approved by                | :                                                                                                                                                                                                                                | Organization<br>FNAL<br>Organization<br>FNAL<br>Organization                                                 | Contact<br>ruben@fnal.gov<br>(630) 840-3915<br>Contact<br>giorgios@fnal.gov<br>(830) 840-297<br>Contact<br>Ezio.Todesco@cem.ch<br>Contact<br>goollina@fnal.gov       |  |  |  |  |  |
| Prepared by<br>Ruben Caro<br>Reviewed by<br>Giorgio Ambr<br>Reviewed by<br>Ezio Todesor<br>Approved by<br>Giorgio Apo | : Date:<br>aqno, US- <u>Hilumi</u> Project Engineer<br>/: Date:<br>osio, US- <u>Hilumi</u> MOXFA L2 Manager<br>/: Date:<br>a, HL-LHC (IR Magnets) Manager<br>/: Date:<br>lilinari, US- <u>Hilumi</u> Project Manager<br>/: Date: | Organization<br>FNAL<br>Organization<br>FNAL<br>Organization<br>CERN<br>Organization                         | Contact<br>ruben@fnal.gov<br>(630) 840-3915<br>Contact<br>aiorgios@fnal.gov<br>(630) 840-297<br>Contact<br>Ezio.Todesco@cem.ch<br>Contact                            |  |  |  |  |  |
| Prepared by<br>Ruben Caro<br>Reviewed by<br>Giorgio Ambr<br>Reviewed by<br>Ezio Todesor<br>Approved by<br>Giorgio Apo | : Date:<br>agno, US-Hilumi Project Engineer<br>r: Date:<br>osio, US-Hilumi MQXFA L2 Manager<br>r: Date:<br>b, HL-LHC (IR Magnets) Manager<br>r: Date:<br>llinari, US-Hilumi Project Manager<br>r:                                | Organization<br>FNAL<br>Organization<br>FNAL<br>Organization<br>CERN<br>Organization<br>FNAL<br>Organization | Contact<br>ruben@fnal.gov<br>(630) 840-3915<br>Contact<br>giorgios@fnal.gov<br>(630) 840-297<br>Contact<br>zpollina@fnal.gov<br>(630) 840-4641<br>Contact<br>Contact |  |  |  |  |  |

- Draft prepared as a US-HiLumi project document to start discussions
- Attempts to collect all the <u>functions</u> that the MQXFA magnet must satisfy
- Several parameters need definition and confirmation by CERN

This document is uncontrolled when printed. The current version is maintained on http://us-hilumi-docdb.fnal.gov





#### **Functional Requirements**

- Classified into two groups:
  - Threshold Requirements (T): project must meet
    - Usually related to "nominal" parameters, but not always (e.g., we <u>must</u> train to ultimate current, which is 108% of nominal current)
  - Objective Requirements (O): project should meet and will strive to achieve
    - Usually related to "target" or "ultimate" parameters, but not always (e.g., reliability requirements that are hard or too costly to verify such as number of thermal cycles)
- Acceptance criteria and procedures will be defined in a separate document
  - At CERN's discretion, deliverables that fall short of the threshold requirements may still be acceptable
    - Example: a magnet deliverable trained to 107% of nominal current instead of 108% (the threshold requirement)
- The MQXFA draft was first presented during the Joint LHC-LARP meeting on May 2015 and already went through several iterations with CERN





#### **MQXFA FRS Table**

#### Threshold Requirements

| ID     | Description                                                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-T-01 | The MQXFA coil aperture requirement is 150 mm. This aperture is the coil inner diameter at                                                                                         |
|        | room temperature, excluding ground insulation, cold bore and beam screens.                                                                                                         |
| R-T-02 | The MQXFA physical outer diameter must not exceed 614 mm.                                                                                                                          |
| R-T-03 | The MQXFA magnet must be capable of reaching a nominal operating gradient of 132.6 T/m                                                                                             |
|        | and an ultimate gradient of 143 T/m. These values are in superfluid helium at 1.9 K and for                                                                                        |
|        | the magnetic length specified in R-T-04.                                                                                                                                           |
| R-T-04 | The MQXFA magnetic length requirement is 4.2 meters at 1.9 K.                                                                                                                      |
| R-T-05 | MQXFA magnets must be capable of operation in pressurized static superfluid helium (HeII)                                                                                          |
|        | bath at 1.3 bar and at a temperature of 1.9 K                                                                                                                                      |
| R-T-06 | The MQXFA cooling channels must be capable of accommodating two (2) heat exchanger                                                                                                 |
|        | tubes running along the length of the magnet in the yoke cooling channels. The minimum                                                                                             |
|        | diameter of the MQXFA yoke cooling channels that will provide an adequate gap around the                                                                                           |
|        | heat exchanger tubes is 77 mm                                                                                                                                                      |
| R-T-07 | At least 40% of the coil inner surface must be free of polyamide                                                                                                                   |
| R-T-08 | The MQXFA structure must have provisions for the following cooling passages: (1) Free                                                                                              |
|        | passage through the coil pole and subsequent G-10 alignment key equivalent of 8 mm                                                                                                 |
|        | diameter holes repeated every 50 mm; and (2) free helium paths interconnecting the yoke                                                                                            |
|        | cooling channels holes                                                                                                                                                             |
| R-T-09 | The MQXFA magnet structure must be capable of sustaining a sudden rise of pressure from                                                                                            |
|        | atmospheric up to 20 bar without damage and without degradation of subsequent                                                                                                      |
|        | performance.                                                                                                                                                                       |
| R-T-10 | The MQXFA magnet structure must be capable of surviving a maximum temperature gradient                                                                                             |
|        | of TBD K during testing without degradation in its performance.                                                                                                                    |
| R-T-11 | The MQXFA magnets must be capable of operating at 14 A/s                                                                                                                           |
| R-T-12 | The MQXFA magnet must withstand a maximum operating voltage of 800 V to ground                                                                                                     |
|        | during quench.                                                                                                                                                                     |
| R-T-13 | MQXFA magnets must be delivered with a (+) Nb-Ti superconducting lead and a (-) Nb-Ti                                                                                              |
|        | superconducting lead rated for 18 kA and adequately stabilized for connection to the Cold                                                                                          |
|        | Mass LMQXFA or LMQXFAB electrical bus                                                                                                                                              |
| R-T-14 | Voltage Taps: the MQXFA magnet shall be delivered with three (3) quench detection voltage                                                                                          |
|        | taps located on each magnet lead and at the electrical midpoint of the magnet circuit; two (2)                                                                                     |
|        | voltage taps for each quench strip heater; and two (2) voltage taps for each internal MQXFA                                                                                        |
|        | Nb3Sn-NbTi splice.                                                                                                                                                                 |
| R-T-15 | The MQXFA magnet coils and quench protection heaters must pass a hi-pot test in liquid                                                                                             |
|        | helium at 1 atm pressure as specified in Table 3 (to be defined)                                                                                                                   |
| R-T-18 | MQXFA magnets must be delivered trained to ultimate current of 108% (17.8 kA) of the                                                                                               |
|        | nominal operating current.                                                                                                                                                         |
| R-T-19 | MQXFA magnets must not quench while ramping down at 300 A/s from the nominal                                                                                                       |
|        | operating current                                                                                                                                                                  |
| R-T-20 | The MQXFA quench protection components must be compatible with the CERN-supplied                                                                                                   |
|        | quench protection system and comply with the corresponding interface document specified by                                                                                         |
|        | CERN [3] (to be defined)                                                                                                                                                           |
| R-T-21 | The MQXFA magnets must meet the detailed interface specifications with the following                                                                                               |
|        | systems: (1) other LMQXFA(B) Cold Mass components; (2) the CERN supplied Cryogenic                                                                                                 |
|        | System; (3) the CERN supplied power system; (4) the CERN supplied quench protection                                                                                                |
|        | system, (5) the CERN supplied power system, (4) the CERN supplied queter protection<br>system, and (5) the CERN supplied instrumentation system. These interfaces are specified in |
|        | [3] (all to be defined)                                                                                                                                                            |
|        |                                                                                                                                                                                    |
| R-T-22 | The MQXFA magnets must meet the corresponding Work Package Launch Safety Agreement                                                                                                 |

#### • Objective Requirements

| ID     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| R-O-01 | MQXFA magnet mechanical twist target is < 1 mrad / 5m, and mechanical straightness target |
|        | is < 100 μm / 5 m                                                                         |
| R-O-02 | The MQXFA field harmonics must be optimized at high field. Table 2 provides specific      |
|        | target values for field harmonics at a reference radius of 50 mm.                         |
| R-O-03 | The fringe field target at a TBD cm distance from the MQXFA magnetic field axis is 50 mT. |
|        | or less.                                                                                  |
| R-O-04 | Splice resistance target is less than 2 nΩ at 1.9K                                        |
| R-O-05 | The MQXFA cross section must have provisions for routing the LMQXFA or LMQXFB             |
|        | superconducting busses.                                                                   |
| R-O-06 | After training and after following a thermal cycle to room temperature, MQXFA magnets can |
|        | attain the nominal operating current with a target of no more than 1 quench.              |
| R-O-07 | All MQXFA components can withstand a maximum radiation dose of 30 MGy.                    |
| R-O-08 | MQXFA magnets can survive 25 thermal cycles during HL-LHC tunnel operations.              |
| R-O-09 | MQXFA magnets can survive 3,000 powering cycles during HL-LHC tunnel operations.          |
| R-O-10 | MQXFA magnets can survive 50 quenches during HL-LHC tunnel operations.                    |

 Parameters in black are more certain. Parameters in red less certain or still under discussion





#### **Next Slides**

- Next slides will provide an overview of the draft MQXFA requirements
  - These requirements should be such that their verification means that the MQXFA magnet deliverables are "fit" (suitable) for the intended purpose, i.e., they will satisfy CERN's needs for HL-LHC
- The purpose is to generate discussions and answer questions such as:
  - Are there still any missing or improperly stated requirements?
  - Can we start converging on agreement for parameters in red?





#### **MQXFA** Physical Requirements

 T: 150 mm aperture, ≤ 614 mm outer diameter

O: ≤ 1 mrad/5m twist, ≤ 100 um/5m straightness





### Magnetic Field Requirements

 T: nominal gradient 132.6 T/m, ultimate gradient 143 T/m (8 % above nominal) in superfluid helium at 1.9K and for a magnetic length of 4.2 m

 O: Fringe field target at TBD distance from the magnetic axis < 50 mT</li>





#### Magnetic Field Requirements

• O: Field harmonics optimized at high field with the following targets:

|        |           | Triplet field quality version 4 - May 20 2015 - Rref=50 mm |            |            |           |            |                    |            |           |            |         |                  |              |            |           |            |
|--------|-----------|------------------------------------------------------------|------------|------------|-----------|------------|--------------------|------------|-----------|------------|---------|------------------|--------------|------------|-----------|------------|
|        |           | Straight part                                              |            |            |           |            |                    |            |           |            |         | Ends             |              | Inte       | gral      |            |
|        |           | Systematic                                                 |            |            |           |            | Uncertainty Random |            |           |            |         | Q                | 1/Q3         | Q          | 2a/b      |            |
| Normal | Geometric | Ass. & cool                                                | Saturation | Persistent | Injection | High Field | Injection          | High Field | Injection | High Field | Conn. S | SideNon conn. Si | le Injection | High Field | Injection | High Field |
| 2      |           |                                                            |            |            |           |            |                    |            | 10        | 10         |         |                  |              |            |           |            |
| 3      | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.820              | 0.820      | 0.820     | 0.820      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |
| 4      | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.570              | 0.570      | 0.570     | 0.570      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |
| 5      | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.420              | 0.420      | 0.420     | 0.420      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |
| 6      | -2.200    | 0.900                                                      | 0.660      | -20.000    | -21.300   | -0.640     | 1.100              | 1.100      | 1.100     | 1.100      | 8.94    | 3 -0.025         | -16.692      | 0.323      | -18.593   | -0.075     |
| 7      | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.190              | 0.190      | 0.190     | 0.190      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |
| 8      | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.130              | 0.130      | 0.130     | 0.130      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |
| 9      | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.070              | 0.070      | 0.070     | 0.070      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |
| 10     | -0.110    | 0.000                                                      | 0.000      | 4.000      | 3.890     | -0.110     | 0.200              | 0.200      | 0.200     | 0.200      | -0.18   | 9 -0.821         | 3.119        | -0.175     | 3.437     | -0.148     |
| 11     | 0.000     | 0.000                                                      | 0.000      | 0.000      | 0.000     | 0.000      | 0.026              | 0.026      | 0.026     | 0.026      |         |                  | 0.000        | 0.000      | 0.000     | 0.000      |

| Skew |       |       |       |       |       |       |       |       |        |        |         |        |        |        |        |
|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|---------|--------|--------|--------|--------|
| 2    |       |       |       |       |       |       |       |       | 10.000 | 10.000 | -31.342 | -2.985 | -2.985 | -1.753 | -1.753 |
| 3    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.650 | 0.650 | 0.650  | 0.650  |         | 0.000  | 0.000  | 0.000  | 0.000  |
| 4    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.650 | 0.650 | 0.650  | 0.650  |         | 0.000  | 0.000  | 0.000  | 0.000  |
| 5    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.430 | 0.430 | 0.430  | 0.430  |         | 0.000  | 0.000  | 0.000  | 0.000  |
| 6    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.310 | 0.310 | 0.310  | 0.310  | 2.209   | 0.210  | 0.210  | 0.124  | 0.124  |
| 7    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.190 | 0.190 | 0.190  | 0.190  |         | 0.000  | 0.000  | 0.000  | 0.000  |
| 8    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.110 | 0.110 | 0.110  | 0.110  |         | 0.000  | 0.000  | 0.000  | 0.000  |
| 9    | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.080 | 0.080 | 0.080  | 0.080  |         | 0.000  | 0.000  | 0.000  | 0.000  |
| 10   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.040 | 0.040 | 0.040  | 0.040  | 0.065   | 0.006  | 0.006  | 0.004  | 0.004  |
| 11   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 | 0.026 | 0.026  | 0.026  |         | 0.000  | 0.000  | 0.000  | 0.000  |





## **Cryogenic Requirements**

- T: Operate at superfluid helium bath at 1.3 bar and 1.9K
- T: Minimum cooling channel diameter is 77mm to accommodate two 74mm O.D. copper heat exchanger tubes
- T: 40% inner coil surface free of polyamide
- T: provisions for cooling passages are 8mm pole holes every 50 mm and free helium paths interconnecting the yoke cooling channel holes
- T: 20 bar peak pressure
- T: Maximum temperature gradient of TBD K during testing





### **Electrical Requirements**

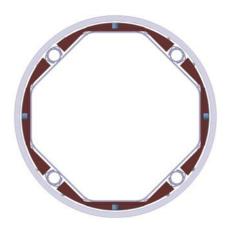
- T: ramp rate of 14 A/s
- T: maximum operating voltage of 800 V to ground during quench
- T: Nb-Ti leads for connection to the bus, stabilized and rated for 18 kA
- T: Splices to be soldered with CERN approved materials
- O: Splice resistance target is less than 2 n $\Omega$  at 1.9K
- O: Provisions for routing LMQXFA/B superconducting busses
- T: 3 quench detection voltage taps, 2 voltage taps for each quench strip heater, 2 voltage taps for internal splice
- T: hi-pot test in liquid helium at 1 atm pressure with following limits:

| Circuit Element                  | Vmax    | V hi-pot       | I hi-pot |
|----------------------------------|---------|----------------|----------|
| Quench Protection Heaters - Coil | 500 V   | TBD            | < TBD µA |
| Magnet Coil - Ground             | 1,000 V | TBD (2,500 V?) | < TBD µA |





### **Quench Requirements**


- T: trained to a current of 108% (17.8 kA) of the nominal operating current
- O: reach nominal operating current with a target of no more than 1 quench after a room temperature thermal cycle
- T: must not quench while ramping down at 300 A/s from nominal current
- T: quench protection components compatible with CERN-supplied quench protection system





## Radiation Hardness Requirements

- O: can withstand a maximum radiation dose of 30 MGy
  - Assumes beam screen with tungsten absorber (provided by CERN):







#### **Reliability Requirements**

• O: can survive 25 thermal cycles, 3,000 powering cycles, and 50 quenches





## Interface Requirements

- T: Comply with Interface Specifications for:
  - Other LMQXFA(B) cold mass components
  - CERN Cryogenic System
  - CERN Power System
  - CERN Quench Protection System
  - CERN Instrumentation System

#### All these interface specifications To Be Defined





#### Safety Requirements

- T: comply with the corresponding CERN Work Package Launch Safety Agreement (LSA) specification (TBD)
  - Meeting scheduled for October 29





#### Path Forward

- The MQXFA draft was first presented during the Joint LHC-LARP meeting on May 2015 and already went through several iterations with CERN
  - Are there still any missing or improperly stated requirements?
  - Can we start converging on agreement for parameters in red?
- US-HiLumi Project Office is working with HL-LHC WP3 Manager (Ezio Todesco) to address these points

– Process for final CERN approval?

- US-HiLumi is going to need a final, approved MQXFA requirements document in less than a year from now
  - Needed to support U.S. project baseline freezing prior to CD-2