

Material Testing for Collimators

<u>F. Carra</u>^{1,2} on behalf of "Jaws" HRMT-23 experiment team and LHC Collimation Project

(1) CERN – European Organization for Nuclear Research, Geneva, Switzerland (2) Politecnico di Torino, Turin, Italy

> 5th Joint HiLumi LHC-LARP Annual Meeting CERN – 28 October, 2015

> > 1

28 October 2015

F. Carra – CERN (EN-MME)

Ш Ш

Engineering Department

- Material tests in specialized laboratories
- Beam-impact experiments
 - TT40 tests (2004 & 2006)
 - HRMT09

High Luminosity LHC

- HRMT14
- HRMT23
- Future tests: MultiMat

Why Do We Need Material Tests?

• **Goal**: explore and determine consequences of Failure Scenarios affecting machine performance for LHC Run 2, Run 3 and HL-LHC

Failure Scenario	Beam Type	Beam Energy [TeV]	Intensity Deposit. [p+]	Beam Emittance [µm]	RMS beam size [mm]
Injection Error	LHC Ultimate	0.45	4.9e13	3.5	1
Injection Error	Run 2 BCMS	0.45	3.7e13	1.3	0.61
Injection Error	HL-LHC	0.45	6.6e13	2.1	0.77
Injection Error	LIU BCMS	0.45	5.8e13	1.3	0.61
Asynchronous Beam Dump	BCMS Run 2	7	1.3e11	1.3	~0.5
Asynchronous Beam Dump	HL-LHC	7	2.3e11	2.1	~0.6

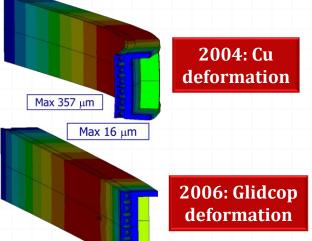
- Demonstrate the viability of a low-impedance collimator solution
- Address the issue of TCT robustness limit
- Demonstrate the robustness of present carbon-based collimators (TCS, TCP) against injection failures with smaller emittances

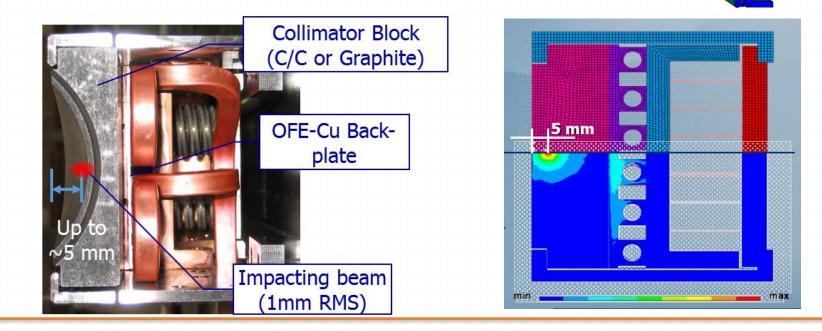
Why Do We Need Material Tests?

- Two main categories of tests for collimator materials:
 - Characterization of material specimens in a specialized laboratory (CERN EN/MME Laboratory, Politecnico di Torino)
 - Allows to evaluate the main mechanical and thermo-physical properties at different levels of strain, strain rate and temperature
 - Main contribution to material models
 - Proton/Ion beam or laser impacts on material specimens or full devices
 - Facilities such as HiRadMat (CERN), Eli-NP (Bucharest, Romania)
 - Reproduction of conditions as close as possible to those of HL-LHC
 - Benchmarking of simulations
 - Validation of the design of full devices
 - Highlights of possible additional issues (vacuum, RP activation, contamination, etc.)

28 October 2015

HiRadMat: TT40 Tests (2004 & 2006)

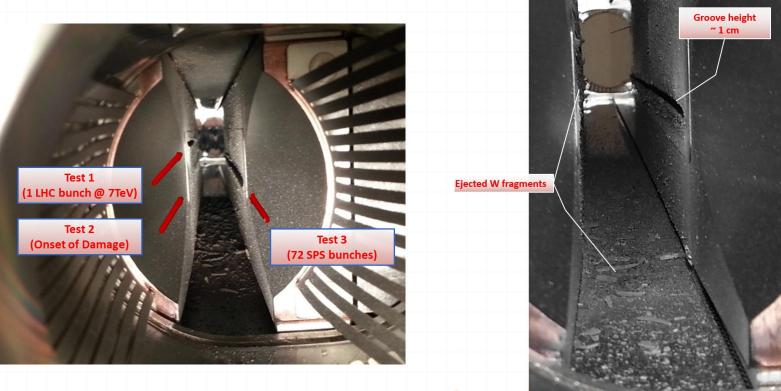

2004: full TCSG collimator in TT40 (CFC + Graphite blocks)


Block material ok, but unacceptable deformation found on Cu jaw support. Cu back-plate was then changed to Glidcop.

2006: full TCSG collimator in TT40 (CFC)

Glidcop housing: minimized deflection. This validated the final TCP/TCS design

TCP/TCS design Full intensity shots from 1 to 5 mm, 3.2×10^{13} p, 7.2μ s, $\sigma = 1$ mm



HiRadMat: HRMT-09

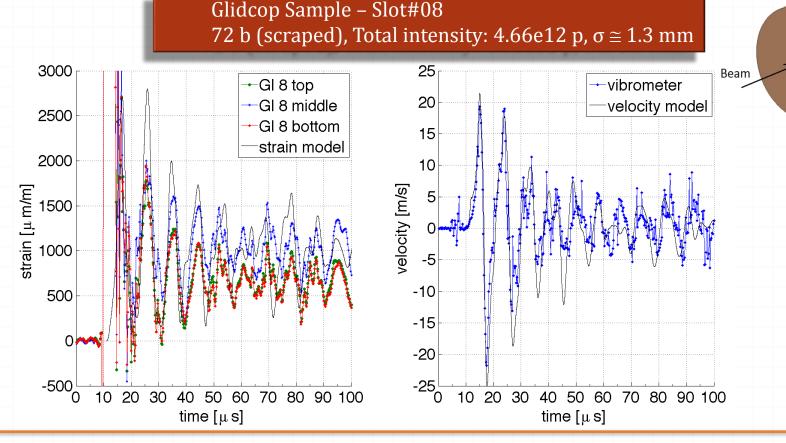
2012: full TCT collimator (Tungsten alloy)

- Allowed to derive damage limits for tertiary collimator jaws
- Highlighted additional potential machine protection issues on top of mechanical damage, due to projection of fragments and dust (UHV degradation, contamination of vacuum chambers, complication of dismounting procedure)

HiRadMat: HRMT-14

2012: test of specimens from 6 different materials, including novel composites

- Allowed characterization of materials of interest for collimators
- Tuning of numerical models, with very good benchmarking between measurements and simulations


Medium Intensity Samples (Type 1)	High Intensity Samples (Type 2)	AUTODIVIESD v14.0 (+Beta Options) Beam 0.000+400 0.000+400) frem ANSYS					ikos ysta
 Strain measurements on sample outer surface; Radial velocity measurements (LDV); Temperature measurements; Sound measurements. 	 Strain measurements on sample outer surface; Fast speed camera to capture fragment front formation and propagation; Temperature measurements; 	0.000+40 0.000+40						
	 Sound measurements. 	Case	Bunches	p/bunch	Total Intensity	Beam Sigma	Specimen Slot	Velocity
(I I I I I I I I I I I I I I I I I I I		Simulation	60	1.5e11	9.0e12 p	2.5 mm	9	316 m/s
		Experiment	72	1.26e11	9.0e12 p	1.9 mm	8 (partly 9)	~275 m/s

HiRadMat: HRMT-14

2012: test of specimens from 6 different materials, including novel composites

- Allowed characterization of materials of interest for collimators
- Tuning of numerical models, with very good benchmarking between measurements and simulations

Engineering Department

HRMT-14: Post Irradiation Tests

- Tank opened in May 2015 in b. 109 (CERN), after 2 ½ years of cool-down
- Activation was low, but risk of contamination due to radioactive fragments and powders (mostly Cu and W)
- Non-destructive and destructive tests planned

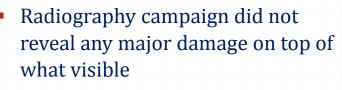
	Order	TEST
	1	Visual Observation
	2	Radiography
Ы И	3	Optical microscopy
E TESTI	4	SEM microscopy
UCTIV	5	XRD
NON-DESTRUCTIVE TESTING	6	Sigmatest
NON	7	Microhardness
	8	Degassing test
	9	Metrology
	10	Weight/Density meassurement

Destructive: inner section observations, machining of specimens for thermomechanical characterization, electrical conductivity measurements, etc.

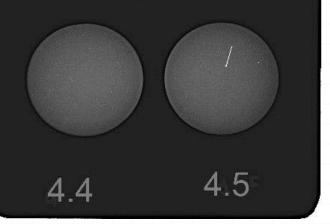
HRMT-14: Post Irradiation Tests

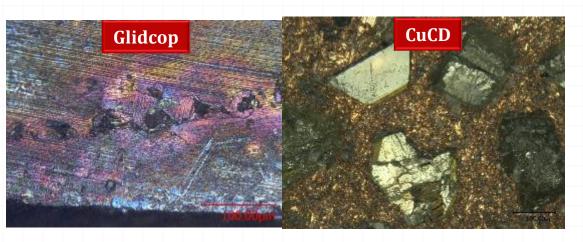
- Tank opened in May 2015 in b. 109 (CERN), after 2 ½ years of cool-down
- Activation was low, but risk of contamination due to radioactive fragments and powders (mostly Cu and W)
- Non-destructive and destructive tests planned

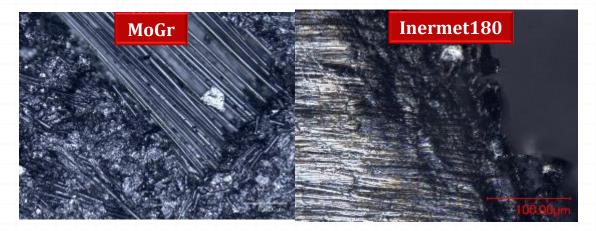
Molybdenum specimen


28 October 2015

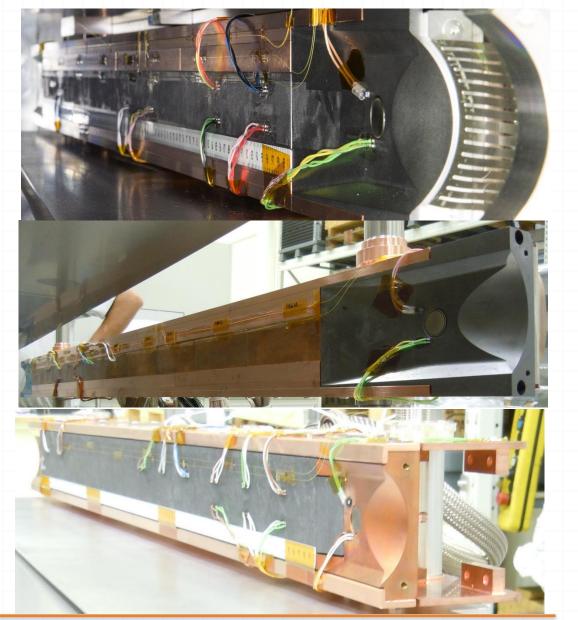
F. Carra – CERN (EN-MME)


HRMT-14: Post Irradiation Tests


Engineering Department



 Optical microscopy highlighted shrinkage of copper-based materials



HRMT-23 Experiment

1. HL-LHC Secondary Collimator Jaw (TCSPM) with 8 MoGr inserts and taperings

HL-LHC Secondary Collimator Jaw (TCSx) with 10 CuCD inserts (MoGr taperings)

3. TCSP jaw: to verify the resistance of Phase I C/C jaw to beam injection accident with HL-LHC parameters

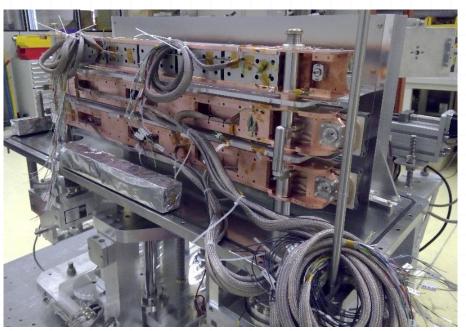
2.

HRMT-23 Beam Parameters

- Test Runs: 24-31 July 2015
- Beam energy: 440 GeV
- Bunch spacing: 25 ns
- Protons/bunch: up to **1.32e11**
- 1 to 288 bunches per pulse
- Beam size (σ): 0.35 to 1 mm
- Total Pulses: **100** (excluding alignment)
- Total Bunches: 8110 (excluding alignment)
 - Total Protons: ~ 1e15

Jaw		# Bunches	Total Intensity	Nominal σx [mm]	Nominal σy [mm]	Nominal Target X [mm]
CuCD	1	6	7.47E+11	0.61	0.61	3.05
CuCD	2	12	1.51E+12	0.61	0.61	3.05
CuCD	3	18	2.56E+12	0.61	0.61	3.05
CuCD	4	24	3.13E+12	0.61	0.61	3.05
CuCD	5	24	2.95E+12	0.35	0.35	0.18
CuCD	6	24	2.86E+12	0.35	0.35	0.7
CuCD	7	24	2.88E+12	0.35	0.35	1.75
CuCD	8	48	6.06E+12	0.35	0.35	0.18
CuCD	9	24	2.93E+12	0.61	0.61	0.18
CuCD	10	48	6.07E+12	0.61	0.61	0.18
CuCD	11	72	8.82E+12	0.61	0.61	0.18
CuCD	12	72	8.65E+12	0.61	0.61	0.61
CuCD	13	72	8.89E+12	0.61	0.61	1.22
CuCD	14	72	8.71E+12	0.61	0.61	3.05
CuCD	15	144	1.73E+13	0.61	0.61	3.05

				Total	Nominal	Nominal				Total	Nominal	Nominal
	Jaw		# Bunches	Intensity	σx	Target X	Jaw		# Bunches	Intensity	σx	Target X
				Intensity	[mm]	[mm]				intensity	[mm]	[mm]
	TCSP	1	12	7.12E+11	0.35	3.05	MoGr	1	12	7.13E+11	0.35	3.05
	TCSP	2	12	7.12E+11	0.35	1.83	MoGr	2	12	7.12E+11	0.35	1.83
	TCSP	3	12	7.13E+11	0.35	0.61	MoGr	3	12	7.12E+11	0.35	0.61
	TCSP	4	12	7.12E+11	0.61	3.05	MoGr	4	12	7.12E+11	0.61	3.05
	TCSP	5	12	1.47E+12	0.61	1.83	MoGr	5	12	7.12E+11	0.61	1.83
	TCSP	6	12	1.48E+12	0.61	0.61	MoGr	6	12	7.12E+11	0.61	0.61
	TCSP	7	12	1.39E+12	1.00	3.05	MoGr	7	12	1.51E+12	1.00	3.05
	TCSP	8	12	1.49E+12	1.00	1.83	MoGr	8	12	1.46E+12	1.00	1.83
	TCSP	9	12	1.47E+12	1.00	0.61	MoGr	9	12	1.51E+12	1.00	0.61
	TCSP	10	6	7.47E+11	0.61	3.05	MoGr	10	6	7.47E+11	0.61	3.05
	TCSP	11	18	2.26E+12	0.61	3.05	MoGr	11	18	2.25E+12	0.61	3.05
	TCSP	12	24	3.07E+12	0.61	3.05	MoGr	12	24	3.07E+12	0.61	3.05
	TCSP	13	24	2.89E+12	0.60	3.05	MoGr	13	24	2.95E+12	0.60	3.05
	TCSP	14	24	2.89E+12	0.60	1.83	MoGr	14	24	2.88E+12	0.60	1.83
	TCSP	15	24	2.93E+12	0.60	0.61	MoGr	15	24	2.88E+12	0.60	0.61
t)	TCSP	16	24	2.96E+12	0.60	0	MoGr	16	24	2.88E+12	0.60	0
	TCSP	17	48	5.88E+12	0.35	0.18	MoGr	17	24	2.86E+12	0.60	0
	TCSP	18	48	6.07E+12	0.35	1.05	MoGR	18	24	2.88E+12	0.35	0.18
	TCSP	19	48	5.84E+12	0.35	1.75	MoGR	19	48	5.93E+12	0.35	0.18
	TCSP	20	72	7.49E+12	0.35	0.18	MoGr	20	72	7.47E+12	0.60	3.05
	TCSP	21	72	7.36E+12	0.35	1.75	MoGr	21	72	7.39E+12	0.60	1.83
	TCSP	22	144	1.48E+13	0.35	1.75	MoGr	22	72	7.39E+12	0.60	0.3
	TCSP	23	144	1.49E+13	0.35	1.05	MoGr	23	144	1.45E+13	0.60	3.05
	TCSP	24	144	1.49E+13	0.35	0.18	MoGr	24	144	1.48E+13	0.60	1.83
	TCSP	25	144	1.86E+13	0.35	1.75	MoGr	25	144	1.44E+13	0.60	0.3
	TCSP	26	144	1.88E+13	0.35	1.05	MoGr	26	144	1.87E+13	0.61	3.05
	TCSP	27	144	1.84E+13	0.35	0.18	MoGr	27	144	1.79E+13	0.61	1.83
	TCSP	28	288	3.66E+13	0.61	3.05	MoGr	28	144	1.80E+13	0.61	0.3
	TCSP	29	288	3.78E+13	0.61	1.83	MoGr	29	288	3.80E+13	0.61	3.05
	TCSP	30	288	3.73E+13	0.61	0.3	MoGr	30	288	3.67E+13	0.61	1.83
	TCSP	31	288	3.73E+13	0.61	5	MoGr	31	288	3.78E+13	0.61	0.3
	TCSP	32	288	3.69E+13	0.35	1.75	MoGr	32	288	3.76E+13	0.35	1.75
	TCSP	33	288	3.77E+13	0.35	1.05	MoGr	33	288	3.79E+13	0.35	1.05
	TCSP	34	288	3.69E+13	0.35	0.18	MoGr	34	288	3.70E+13	0.35	0.18
	TCSP	35	288	3.79E+13	0.35	5						



HRMT-23 Instrumentation

Z Ш
Jt
Ō
epartment
i i i
a
0
Ð
60
ineering
2
Ð
Ð
60
Ĩ

LHC Collimation

Experiment Instrumentation	Sampling frequency
126 electrical strain gauges	4 MHz
42 temperature probes	200 Hz
Laser Doppler Vibrometer	4 MHz
Water pressure sensor	100 kHz
60 strain Optical Fibre Bragg Gratings	500 Hz
Inspection HD Camera (4K)	-
High Speed Camera + LED lighting system	20 000 fps
In-jaw US probes (Omniscan)	-

HRMT-23 First Results, CuCD

- CuCD on HL-LHC jaw survived (with a limited surface scratch on the Cu coating) the impact of 24 b, σ 0.35 mm at 440 GeV, with peak energy density roughly equivalent to 1 LHC bunch at 7 TeV
- At 48 b (~2 LHC 7 TeV bunches) the scratch is more severe, but the jaw appears globally undeformed
- This would qualify CuCD as an alternative material for TCT jaws (presently in Tungsten alloy). Local damage induced by Asynchronous Beam Dump could be compensated by jaw shift with 5th axis

~7:8 mm

24 bunches 440 Ge

~8.5 mm

CuCD jaw after 24 b, σ 0.35 mm. Note thin, long groove

Groove caused on TCT by

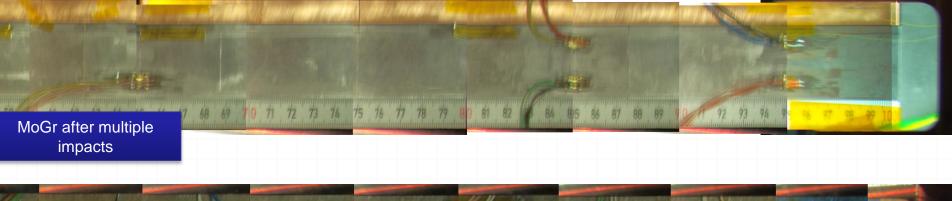
an SPS 24 b pulse (HRMT-09, 2012)

HRMT-23 First Results, CuCD

Impacts on CuCD jaw 48 bunches, σ 0.35 mm, Impact depth 0.5 σ

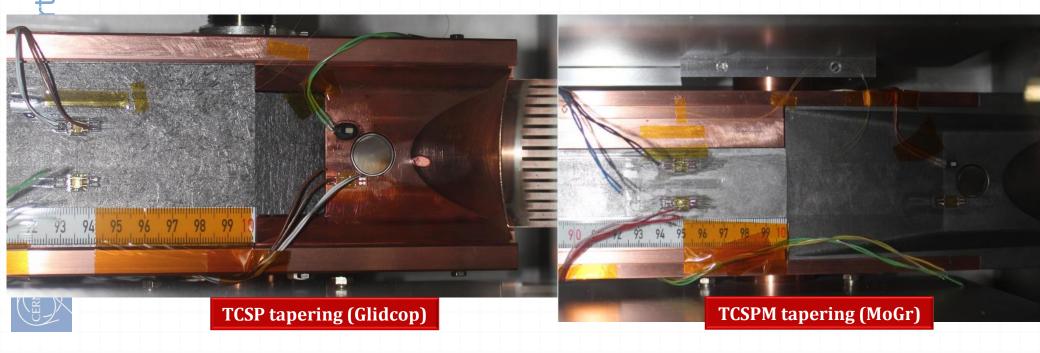
Impacts on CuCD jaw 72 bunches, σ 0.61 mm, Impact depth 1 σ

28 October 2015


F. Carra – CERN (EN-MME)

HRMT-23 First Results, MoGr&CFC

- MoGr on HL-LHC jaw survived the impact of several 288 b pulses with σ down to 0.35 mm (peak energy density slighly higher than HL-LHC and BCMS LIU injection error)
- CFC on LHC jaw survived the same impacts
- Preliminary results would qualify MoGr (from robustness point of view) as an alternative to CFC with a factor 5 to 10 gain in electrical conductivity



ment

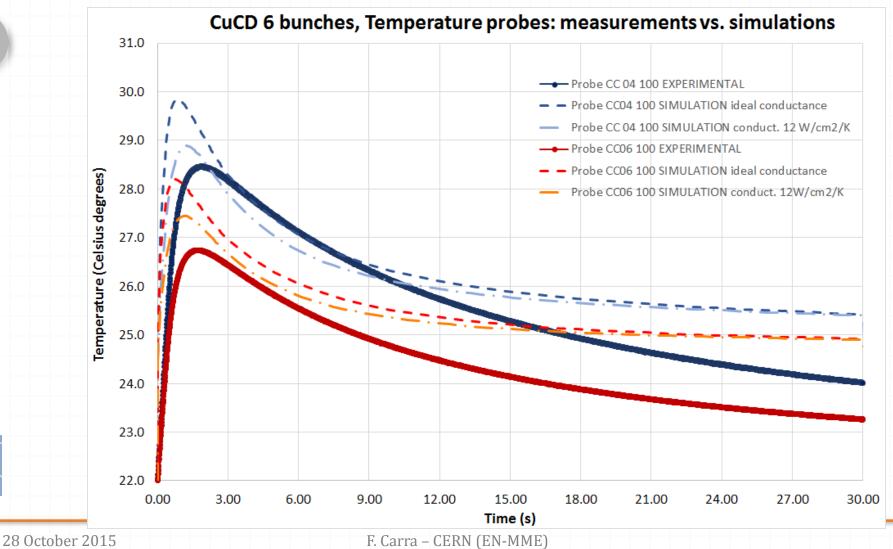
HRMT-23 First Results, MoGr&CFC

- Post-irradiation HD pictures were taken one month after the experiment
- A hole in the TCSP Glidcop tapering was observed, while the two TCSPM jaw taperings, in MoGr, are visually unscathed → MoGr is a more robust option as a tapering material also for TCSP
- The electrical functionality of the BPM embarked in the three jaws will be verified during the post-irradiation experiments, once opening the tank

oartment

HRMT-23 First Results, MoGr&CFC

- Post-experiment observations also allowed to observe some marks on the CFC and MoGr surfaces
- The visibility of the marks changes with the light orientation
- Probably generated during the 0.5 sigma impacts by detachment of the surface powders (pencil-like surface typical of graphitic materials, no etching done before the experiment)
- No cracks are visible

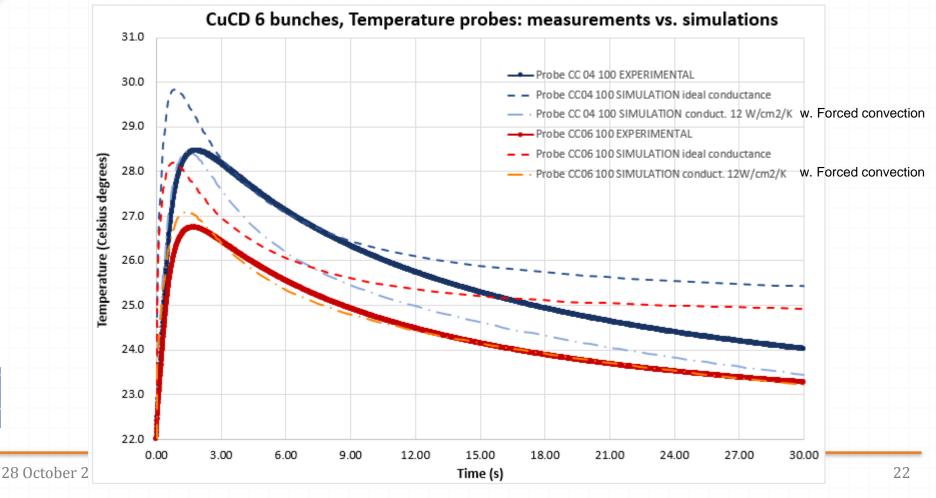

TCSP Jaw

HRMT-23 Numerical/Experimental Benchmarking

• THERMAL: CuCD 6 bunches, σ 0.61 mm, impact 5σ

Engineering Department

21



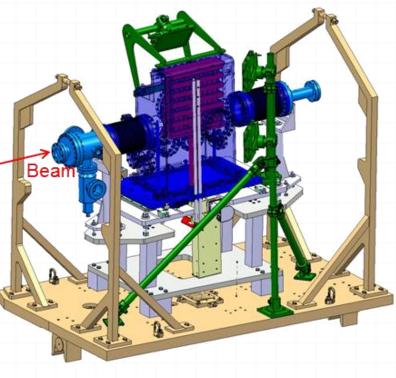
Engineering Department

HRMT-23 Numerical/Experimental Benchmarking

- Cool-down simulated is much slower, typical of forced convection (nominal film coefficient of LHC collimators with circulating water!)
- Shock-enhanced water forced convection?

What's Next: MultiMat

- TT40/HRMT-09 → HRMT-23
 - Improved instrumentation for monitoring of temperature
 - Addition of strain gauges, LDV, HD and high-speed camera, US probes
 - Shock-wave propagation into water


■ HRMT-14 → MultiMat

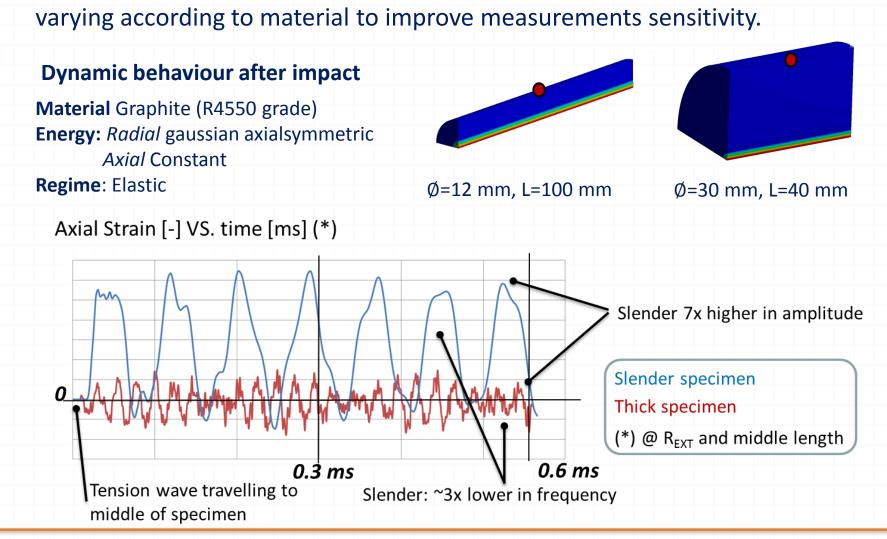
- Sample holder including materials of interest for injection and dump absorbers, protection devices (in addition to collimators)
- Improved geometry and instrumentation to be able to acquire clear signals from low-Z materials (problematic in HRMT-14)
- **Synergy** with other projects such as **TDI**, **TCDI**, etc.
- Join forces, optimize resources and share costs between BE/ABP, BE/OP, EN/MME, EN/STI, TE/ABT
- Scientific board of HiRadMat already approved the proposal! Scheduled for **2017**

- MultiMat goals:
 - Test samples of novel/advanced materials under very bright beams
 - Acquire online exploitable data particularly for low-Z materials
 - Confirm/extend constitutive model for high-Z materials
 - Benchmark not-yet-explored effects such as code coupling
- Beam intensity up to 288 bunches, 2.3e11 p/b, beam size down to 0.3x0.3 mm² → target is HL-LHC equivalent energy density
- Design and instrumentation inspired by HRMT14 experiment
- **12 target stations** each hosting several specimens

- Estimated size: 2100x1200x400 mm³
- Estimated weight ~ 1.5 tons

- Materials to be tested will likely include:
 - Molybdenum Carbide Graphite
 - Copper Diamond
 - Other Ceramic-Graphite composites (under development)
 - Carbon/Carbon (both 2D and 3D grades)
 - Graphite
 - Boron Nitride
 - Glidcop
 - Molybdenum
 - Tungsten heavy alloys (Inermet, W-Re etc.)
- Coatings also to be tested:
 - High-conductivity (electrical)
 - Vacuum-relevant coatings? (NEG, carbon, ...)

	HiRadMat High-Radiation to Materials	HiRadMat - Expe ED	riment Proposal MS No: 1213282 Version 2.0
HiRadMat Beam	Time Request Form	Designation	
		Experiment Name	to be assigned
		Acronym	to be assigned
Date 08.09.2014			
General			
Responsible/primary co	ontact		Person completing this beam request
Name	Alessandro Bertarelli		
Home institute	CERN		
E-mail	alessandro.bertarelli@cern.ch		
Phone	+41-22-7672337		
Participating institutes	Politecnico di Torino, Italy Participations from other EuCARD possible.	2 partners are also	List of participatin institutes, relevan information for EuCARD Transnational Access.
Number of team members	At least 2		Estimated number of persons participating to th preparation and/or th experiment with travel/sta at CERN.
Interested in	Yes		More information a http://cern.ch/hiradmat
Transnational Access			
Scientific descriptio	n		
Executive summary	Impact tests with beam pulses up injection parameters (440 GeV, 288 on a several target stations each hos of one relevant materials. The ex comprehensive acquisition system off-line the response of material impacts.	bunches, 2.3e11 p/b) ting specimens made periment includes a monitoring on- and	A very short (couple of phrazes) description of th scientific purpose and th experimental setup.
Scientific motivation	Extended description of th scientific purpose (couple or paragraphs) includie expected scientific results.		

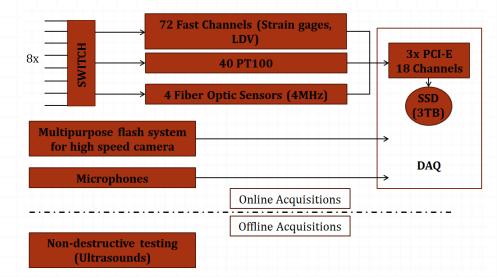


MultiMat Specimens

Engineering Department

Specimen shapes and dimensions are being optimized (disks, cylinders, bars ...),

MultiMat Instrumentation


- Instrumentation (MME Mechanical Lab). Main objectives:
 - Acquire online pressure waves at relevant locations.
 - Acquire online temperatures on relevant locations.
 - Detect online high speed vibrations (pressure wave induced)
 - Detect online low speed oscillations (typically induced on slender structure by off-center beams)
 - Visually Record (possible) specimen explosion / fragmentation
 - Detect offline (possible) internal material damage (e.g. delamination, cracks, tunneling ...)
- Motorization: controls and hardware compatible with HRMT-14. Updated software interface required. Help by EN/STI/ECE ...
- Acquisition System: the DAQ hardware and infrastructure should be designed and implemented with a comprehensive view on a larger spectrum of HiRadMat Experiments \$\Rightarrow Modular DAQ with synergy with and contribution from other experiments and projects.

MultiMat Instrumentation

- A modular acquisition system is being developed to allow online and offline monitoring of several HiRadMat experiments:
 - 8:1 switch for online acquisition
 - 72 fast channels (strain gages, LDV)
 - 40 PT100
 - 4 Fibre Optic Sensors (FOS)
 - Flash or LED system for wider range of applications, to be used together with high speed cameras
 - Non-destructive testing (Ultrasounds)

Engineering Department

28 October 2015

MultiMat Post-Irradiation

- After successful experience with HRMT-14 PI: exploiting existing facilities in building 109 equipped to work on contaminated materials
- Design to be studied keeping in mind space constraints given by b. 109 machines!
- In particular for opening system

Summary (1/2)

- In the last ~10 years, several beam-impact tests on collimator and collimator materials have been performed
- Tests in 2004 and 2006 validated the CFC-based collimator design (TCP, TCS)
- Tests in 2012 in the HiRadMat facility showed the low robustness of tungsten tertiary collimators (HRMT09) and characterized novel materials for HL-LHC challenges (HRMT14)
- A new secondary collimator design has been proposed in 2014 around CuCD and MoGr, to cope with the demanding HL-LHC requirements (in particular impedance, robustness and geometrical stability)
- A new HiRadMat test (HRMT-23) was run in August 2015 to demonstrate the validity of the two HL-LHC collimators, and to test a TCSP at the energy density of HL-LHC injection error



Summary (2/2)

- HRMT-23 preliminary considerations:
 - CFC and MoGr seemingly survived all impacts up to 288 b, σ 0.35 mm, grazing and deep impacts, slightly in excess of peak energy density of HL-LHC and LIU BCMS Beam Injection Error
 - CuCD survived (with surface scratch) by 24 b, σ 0.35 mm roughly equivalent to 1 full LHC bunch (asynchronous beam dump failure)
 - Contrarily to Glidcop, MoGr taperings of TCSPM jaws survived unscathed the beam impacts → MoGr taperings to be considered also for all the other collimators with embedded BPMs!
 - Instrumentation and controls, which worked very well in spite of R2E in the service tunnel, can possibly reused in series production!
- MultiMat experiment will complement and improve HRMT-14 test, including materials for collimators, injection and dump absorbers, protection devices, and exploring further mechanisms of shock-wave propagation
- Collaboration with other departments and groups (BE/ABP, BE/OP, EN/MME, EN/STI, TE/ABT, ...)
- Experiment scheduled in 2017 → Engineering design to start soon!

From HRMT14 (2012)...

ering Den

Thank you all for your attention!

... to HRMT23 (2015)...

...MultiMat next!!!

28 October 2015

F. Carra – CERN (EN-MME)

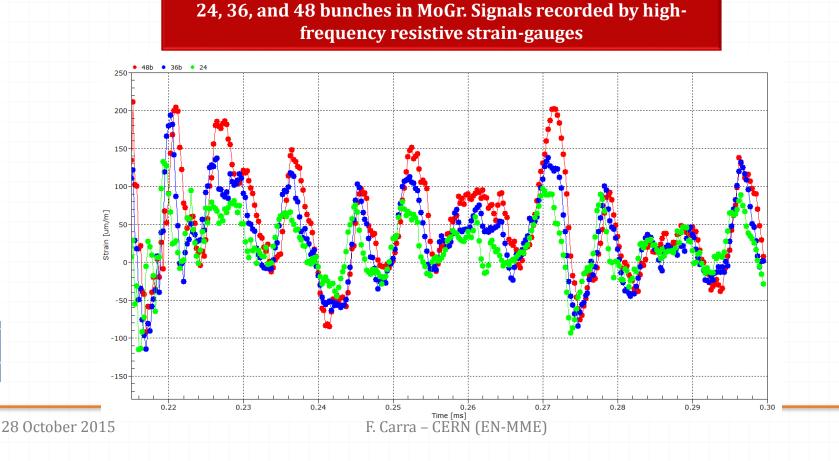
HRMT-23: HL-LHC Collimator Design

- Modular design allowing to install 8 or 10 jaw inserts made of advanced materials (MoGr or CuCD), with optimized RF features
- (Ambitious) timeline (defined by the ATS directorate after the 2013 review) aiming to produce a full collimator prototype for beam tests in LHC in 2016/17
- Pre-requisite: full validation of new design and materials at HiRadMat

Molybdenum Carbide – Graphite (MoGr), codeveloped by CERN and Brevetti Bizz (IT): high thermo-mechanical properties and low electrical resistivity (factor 5 to 10 better than carbon).

Favorite option for low-impedance, high-robustness Secondary Collimators

MoGr (high robustness) CuCD (higher density) **Copper-Diamond (CuCD)**, produced by RHP-Technology (AT): composite keeping most of Cu thermoelectrical properties, while reducing density and improving structural behavior. Possible option for improved Tertiary Collimators

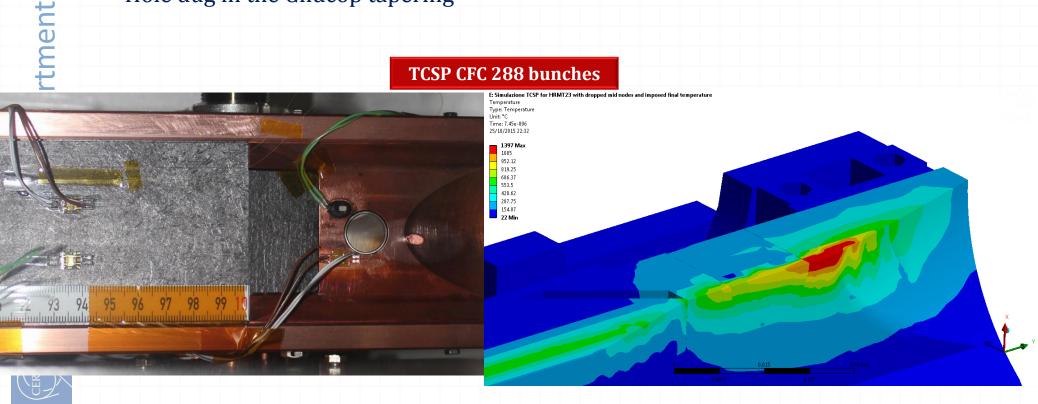


HRMT-23 First Results Overview

- HRMT-23 successfully installed and operational in line with HiRadMat planning.
- All instrumentation, control and acquisition systems worked remarkably well including newly
 operated systems such as fibre optics sensors and ultrasound sensors.
- High R2E in particular at the end of the experiment, at high intensity shots: this triggered an upgrade of the shielding system in the parallel tunnel

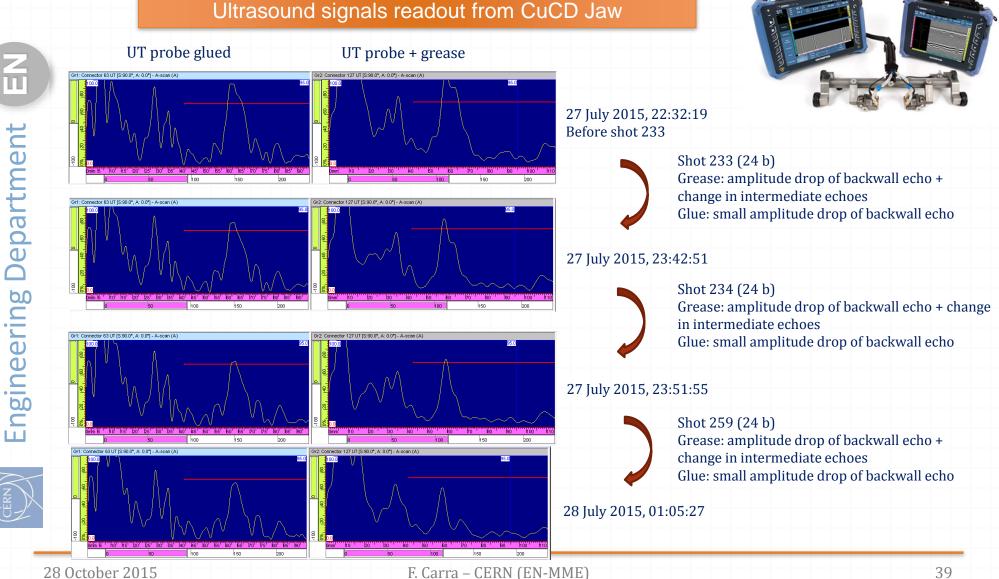
HRMT-23 Experiment

- **3** separate **complete jaws** extensively instrumented.
- Stainless steel vacuum vessel (p > 10⁻³ mbar).
 Quick dismounting system to access and manipulate jaws in a glove box.
- **Be/CFC vacuum windows**: design to withstand higher energy density and intensity
- **Horizontal actuation** inspired by collimator movable tables; Stroke (H): 35 mm
- **Vertical movement of the whole tank**; stroke (V) +/-140 mm. 3 separate windows sets for each jaw
- **Control system** derived from HRMT-14
- Standard HiRadMat support table:
 - Total envelope: 1.2(H) x 0.4(W)x 2.1(L) m³
 - Total mass ~ 1600 kg

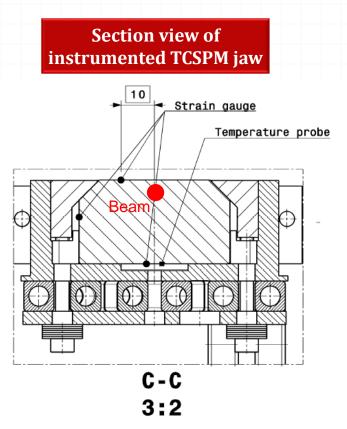


HRMT-23 Numerical/Experimental Benchmarking

- THERMAL: TCSP 288bunches, σ 0.35 mm, impact 5 mm
- Simulation: σ 1 mm, impact 5 mm
- Hole dug in the Glidcop tapering

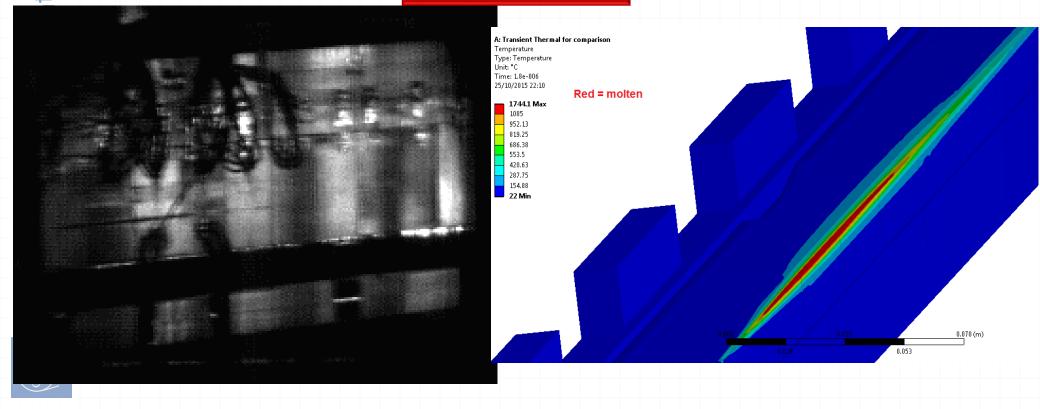

TCSP CFC 288 bunches

HRMT-23 First Results Overview



Preliminary Experimental/Numerical Benchmarking

- Existing FLUKA analyses possibly to be complemented in the future, including the impact scenarios not simulated yet (in particular, only one impact depth is present for the σ 0.35 mm)
- We are focusing on the thermal simulations/measurements at first
- Example: temperature probes on CuCD jaw



Preliminary Experimental/Numerical Benchmarking

THERMAL: CuCD 72 bunches, σ 0.61 mm, impact 1σ

Both CuCD bulk and Cu coating melted and were ejected

TCSPM CuCD 72 bunches

Ag Department

Engin

Preliminary Experimental/Numerical Benchmarking

- While thermal simulations on MoGr are ongoing, and structural on the three materials are next, a structural simulation performed on BCMS beam features parameters very close to a HRMT-23 case
 - BCMS cases simulated: 144 & **288** bunches, σ **0.61** & 1 mm, impact 1σ

		Y,	Simulated scenarios: summary of results						
	aha	•	144 bu	inches	288 bi	inches	Defenence		
	X - Z		0.61	1	0.61	1	Reference		
- DI		ε _{+x}	650	700	2000	2100	2600		
	CFC normal	ε _{+y}	400	320	800	730	850		
	strains	ε _{+z}	400	320	470	440	1800		
	(tension and compression)	ε _{-x}	-2500	-2800	-7600	-7700	-150000		
	[µm/m]	ε _{-y}	-180	-170	-410	-470	-8000		
-		8 _{-z}	-80	-80	-160	-170	-7500		
	Plastic stra	•	0	0	0	0			
components Carra – CERN (EN-MME)									

Preliminary Experimental/Numerical Benchmarking

 Damage of the jaw not expected, although very close to the limits in case of 288 b → likely numerical simulations conservative wrt reality? (material damping, strain hardening, improvement of graphite materials with temperature all not considered)

C: Copy of Transient Structural WholeStructure_X deformation Type: Directional Deformation(X Axis) Unit: mm Fluka Plane Time: 1.5e-002 01/10/2015 20:51

0.0017992 Max -0.0039563 -0.0097117 -0.015467 -0.021223 -0.026978 -0.032734

Dynamic response of TCSP

impacted by 144 bunches

-0.038489 -0.044245 -0.05 Min