

WADAPT

News

Elizabeth Locci CEA-Saclay/DSM/IRFU/SPP

Elizabeth Locci 16/06/2015

FCC-Saclay Meeting

Why this Meeting?

- Get together physicists/engineers interested in a common project of wireless readout (& wireless powering)
- Physicists working on Wireless-readout project in the context of ATLAS-experiment vertex detector. Similar vertex detectors are a must in present and future large HEP experiments
- Engineers, specialists of wireless techniques, constantly developing and making progress in those.

- How to work work together in the frame of a Collaboration for the benefit of all?
- How to organize ourselves?
- Future plans?
- Milestones?

WADAPT		
chaired by Elizabeth Locci (CEA/IRFU,Centre d'e Friday, 12 June 2015 from 08:00 to		
9 CERN (4-S-020)	Ма	nage 🔻 👘
Videoconference Rooms 😵 WADAPT	Join 🛛 🖛 4-S-020	

Friday, 12 June 2015

09:00 - 09:05	Introduction 5' Speaker: Elizabeth Locci (CEA/IRFU,Centre d'etude de Saclay Gif-sur-Yvette (FR)) Material: Slides	<i>Q</i> •
09:05 - 09:45	The 60 GHz transceiver chip 40' Speaker: Hans Kristian Soltveit (Ruprecht-Karls-Universitaet Heidelberg (DE)) Material: Slides	2-
09:45 - 10:25	The 60 Ghz lab-measurements 40' Speaker: Sebastian Dittmeier (Ruprecht-Karls-Universitaet Heidelberg (DE)) Material: Slides	Q •
10:25 - 10:40	Coffee break	
10:40 - 11:20	Results from studies on 60 GHz strip and patch antennas 40' Speaker: Richard Brenner (Uppsala University (SE)) Material: Slides	2-
11:20 - 12:00	Mmw readout 40' Speaker: Cedric Dehos (CEA-Leti) Material: Slides	Q.
12:00 - 13:30	Lunch break	
13:30 - 13:50	WADAPT Web site 20' Speaker: Sebastien Ceuterickx (CERN)	<i>Q</i> •
13:50 - 14:00	AOB 10' Speaker: Elizabeth Locci (CEA/IRFU,Centre d'etude de Saclay Gif-sur-Yvette (FR)) Material: Slides	<i>Q</i> •
14:00 - 16:00	General Discussion - Plans - Organization 2h0'	<i>Q</i> -

3

09:05 - 09:45 The 60 GHz transceiver chip 40'

Speaker: Hans Kristian Soltveit (Ruprecht-Karls-Universitaet Heidelberg (DE))

OUTLINE

- Introduction to Millimeter Wave
- Features of the 60 GHz band
- Practical opportunities
- Application in HEP
- Proposed Readout Concept
- Applied Technology
- 60 GHz Transceiver Chip
- Performance from Simulations
- Silicon Integration Challenges
- Summary and Outlook

Summary and Outlook

- MM-wave technology presented as a possible solution for current bandwidth limitations of LHC and maybe other detector facilities.
- \Rightarrow A 60 GHz transceiver has been proposed for the first prototype.
- \diamond Schematic and simulations of some blocks shown.
- ♦ SiGe BiCMOS technology chosen for the first prototype
- ♦ Challenges to integration of MM-wave system discussed

SnowMass 2013 Community Summer Study: The Instrumentation Frontier

"Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data readout of the detector"

There is a lot of interest for this development on different levels

3-student from University of Bergen (Norway) has shown interest for the project: 2-3 months paid stay in HD for each of the student are possible.

60 GHz ASIC prototype in HD under development

Planned Submission: 30 Nov. 2015

09:45 - 10:25

The 60 Ghz lab-measurements 40'

Speaker: Sebastian Dittmeier (Ruprecht-Karls-Universitaet Heidelberg (DE))

Lab measurements done in Heidelberg

- Data transmission studies
- Material properties
- Antenna characterization
- Cross talk and link density studies Summary

Stable data transmission of 1.76 Gbps with test setup: $BER < 10^{-14}$

SCT detector modules attenuate transmission of 60 GHz waves by \geq 55 dB

By means of antennas, polarisation and graphite foam, a high link density can be achieved. Link pitch ≤ 5 cm @ S/N ≥ 20

Performance of detector modules will not be degraded by 60 GHz waves 10:40 - 11:20

Results from studies on 60 GHz strip and patch antennas 40'

Speaker: Richard Brenner (Uppsala University (SE))

11:20 - 12:00

Mmw readout 40'

Ceatech

Speaker: Cedric Dehos (CEA-Leti)

Requirements

- CERN specifications
 - Radial wireless transmission of detector data
 - Remote power supply as a must
- Technical issues
 - Important aggregated data rate from detectors (Tbytes/s)
 - Important number of detector modules (20000 for ATLAS)
 - Crosstalks
 - Signal confinement
 - Liability in harsh environment (radiations)
 - Low power consumption (for remote power supply)
 - Efficiency of remote power transmission
 - Etc.

-> Wifi not suitable: Limited data rate, low QoS, important power consumption

-> Optical links not suitable: Difficult implementation

Possible radio schemes Ceatech Layer to layer transmission of data @60GHz Proposed by Heidelberg Univ. Ceiling BH BH AP Low power short range transmission Time domain transceiver Gateway Aggregation of data Gateway Medium range high data rate transmission-Frequency domain transceiver Layer C Wireless access point Laver B

60Ghz Trx

Laver A

Leti mmw

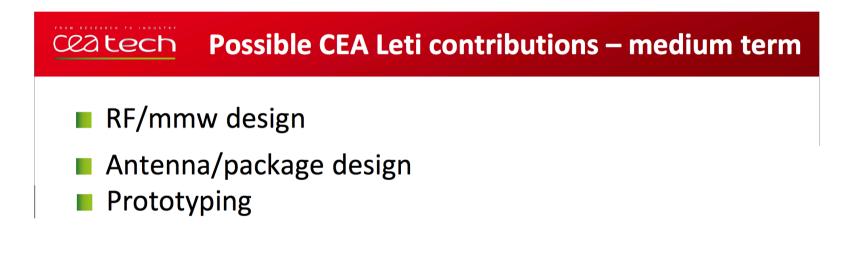
1 21

~10 cm

© CEA. All rights reserved

- Multi user access scheme
- Very high data rate
- Frequency domain transceiver

4 & Data Backhauling


1.

2.

3.

Ceatech Possible CEA Leti contributions – short term

- Architecture and system studies
- Preliminary experimentation

13:30 - 13:50 WADAPT Web site 20'

Speaker: Sebastien Ceuterickx (CERN)

General Discussion

DRAFT

• Completion ? Publication? Seminars? Conferences?

ORGANISATION

• Responsibilities? Meetings? Milestones? Steps?

CONTACTS – Possible Collaborations/PhD Thesis

- ◆ TELECOM Paris
- ESA Environment (radiations, EMC/EMI aspects)
- ♦ AWE Simulation

News from ASAHEL

- Draft on Archive https://archive.org/details/ASAHEL
- Presentation at the Detector Workshop June 17-18th