FCC-ee: Optics update

FCC-ee optics meeting

19 June 2015

K. Oide

Insertion Lengths

Insertion Lengths

Half Ring

The geometry and the circumference have been more or less adjusted.

The SR loss and the RF voltage are reduced. $U_0 = 3.1$ GeV, $V_c = 4.6$ GV/half ring.

+ crab waist + solenoids

from the dipoles near the IP.

IP Solenoid & Compensation FCCee_t_35_11_cw.sad

- Compensation solenoids (1) shield the final quads (2) cancel the integrated rotation.

- Residual couplings are corrected by a roll of QC2 and skew quads outside, 7 skews/side (I assume QCI cannot roll).

IR Radiation

- The critical energy and radiation power of the dipoles are as above.

Dynamic Aperture

- Momentum acceptance (dynamical) of ±2% is achieved assuming synchrotron radiation damping.
- Crab waist, solenoids, synchrotron motion, damping are included.
- Crab waist reduces the dynamic aperture, but recovered by re-optimizing the sextupoles.
- Skew sextupoles are added on some sexupoles near the IR to compensate the chromatic coupling.

Summary

- * An example optics for the FCC-ee rings are presented, consisting of
 - * 2 IPs/ring
 - 30 mad crossing angle.
 - Weak dipoles near the IP with $u_c < 100$ keV.
 - A local chromaticity correction system with virtual crab-waist sextupoles.
 - A solenoid / anti-solenoid configuration.
 - Separated tunnel for 5 6 km / IP, usable for an injector bypass.
- Two RF sections at 90/270 degrees will be the best, considering the common rf and cross-over of the beam, assuming the solution of sawtooth by tapering.
- The dynamic aperture appears to be OK, at least for tt.
- More asymmetric IR with stronger dipoles for the outgoing beam may reduce the length of separation between two beams.
- The issue of spin depolarization and generation of vertical emittance by kinks has been solved by I. Koop.