

Higgs physics at the HL-LHC and complementarity to FCC-ee

Lorenzo Bianchini ETH Zürich

FCC-ee Workshop, Sept. 23 2015, CERN

Run I legacy

CMS-PAS-HIG-15-002,

What is still missing

CMS-PAS-HIG-15-002, ATLAS-CONF-2015-044

Production process	Observed Significance(σ)	Expected Significance (σ)	
VBF	5.4	4.7	
WH	2.4	2.7	
ZH	2.3	2.9	
VH	3.5	4.2	
ttH	4.4	(2.0) • Es	tabilsh ttF
Decay channel			
Η→ττ	5.5	5.0	
H→bb	(2.6)	3.7	
	• Obs	erve H→bb	

Some "distinguished" processes still lurking in the background

- as it should be if they are SM-like
- need full HL-LHC program to dig them out
 - for some, it may be not enough...

Framework for HL-LHC projections

- Projections for HL-LHC:
 - ATLAS:

"Simulation smeared by HL-LHC resolution functions. Repeat Run I-like analyses."

CMS:

"Project Run I analyses data cards (2013) to high-lumi. Full detector simulation validates projection."

• A few caveats:

- Not always best analyses projected
- Theory uncertainties as of the time of projections
 - theoretical calculation is an evolving field
 - LHC data can give constraints (e.g. PDF)
- Run I analyses optimised for early discovery
- Systematic-free analyses not yet addressed
 - e.g.: $\sigma(ttH)/\sigma(ttZ)$, $\sigma(VH \rightarrow \tau\tau)/\sigma(VH \rightarrow bb)$ in same phase-space

Physics reach with 3 ab⁻¹

Naive scaling challenged by:

- Iuminosity uncertainty
 - common to all measurements (~3%)
- detector performances
 - e.g. pile-up (<µ>~128)
- theory uncertainties
 - σ_{SM} × BR_{SM} × A_{SM} known up to some accuracy (~ NLO+PS)

Targets for the HL-LHC

Now: 3% (N³LO)

ATL-PHYS-PUB-2014-016

Status	Dec	Deduced size of uncertainty to increase total uncertainty							
2014	by ≲	;10% for	300 fb^{-1}		by ≲109	% for 30	00 fb^{-1}		
[10–12]	κ _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}	
8	2	-	-	1.3	.	-	-	-	
7	2	-	-	1.1	<u>~</u> 0	-	-	-	
10–20	-	3.5–7		-	1.5–3	-	-	-	
13–28	-	-	6.5–14	-	3.3–7	-	-		
18–58	-	-	-	-	-	6–19	-		2
12–38	-	-	-	-	-	-	6–19	- 1	
3.3	-	-	-	-	-	2.8	-	-	
9	-	-	-	-	-	-	-	3	V 2
8	-	-	-	-	-	-	-	2	_ ^J
	Status 2014 [10–12] 8 7 10–20 13–28 18–58 12–38 3.3 9 8	Status Dec 2014 by \leq [10-12] κ_{gZ} 8 2 7 2 10-20 - 13-28 - 18-58 - 12-38 - 3.3 - 9 - 8 -	Status Deduced siz 2014 by ≤10% for [10–12] κ_{gZ} λ_{gZ} λ_{gZ} 8 2 7 2 10–20 - 13–28 - 18–58 - 12–38 - 3.3 - 9 - 8 - 9 - 8 -	Status Deduced size of uncert 2014 by $\leq 10\%$ for 300 fb ⁻¹ [10-12] κ_{gZ} λ_{gZ} 8 2 - - 7 2 - - 10-20 - 3.5-7 - 13-28 - - 6.5-14 18-58 - - - 12-38 - - - 3.3 - - - 9 - - - 8 - - -	Status Deduced size of uncertainty to by $\leq 10\%$ for 300 fb^{-1} KgZ $[10-12]$ κ_{gZ} λ_{gZ} $\lambda_{\gamma Z}$ κ_{gZ} 8 2 - - 1.3 7 2 - - 1.1 10-20 - 3.5-7 - - 13-28 - - 6.5-14 - 18-58 - - - - 12-38 - - - - 3.3 - - - - 9 - - - - 8 - - - -	Status 2014 $[10-12]$ Deduced size of uncertainty to incread by $\leq 10\%$ for 300 fb ⁻¹ by $\leq 10\%$ κ_{gZ} 8 7 10-20 2 2 - - - - 1.3 1.1 $\times 6$ $\times 6$ 10-20 10-20 - 3.5-7 3.5-7 - - - 1.5-3 3.3-7 - 13-28 12-38 - - - - - - - - 3.3 - - - - - - - - 9 8 - - - - - - - -	Status Deduced size of uncertainty to increase total by $\leq 10\%$ for 300 fb ⁻¹ by $\leq 10\%$ for 30 $[10-12]$ κ_{gZ} λ_{gZ} $\lambda_{\gamma Z}$ κ_{gZ} $\lambda_{\gamma Z}$ λ_{gZ} 8 2 - - 1.3 $\chi_{\gamma Z}$ λ_{gZ} λ_{gZ} 7 2 - - 1.3 $\chi_{\gamma Z}$ λ_{gZ} λ_{gZ} $10-20$ - $3.5-7$ - - 1.5-3 - $10-20$ - $3.5-7$ - - 1.5-3 - $13-28$ - - 6.5-14 - $3.3-7$ - $13-28$ - - - - 6-19 $12-38$ - - - - - - 3.3 - - - - - - - 9 - - - - - - - - 8 - - - - - - - - 8 - -	Status Deduced size of uncertainty to increase total uncertainty to increase total uncertainty by $\leq 10\%$ for 3000 fb ⁻¹ by $\leq 10\%$ for 3000 fb ⁻¹ 2014 $by \leq 10\%$ for 300 fb ⁻¹ $by \leq 10\%$ for 3000 fb ⁻¹ $10-12$ κ_{gZ} λ_{gZ} $\lambda_{\gamma Z}$ k_{gZ} $\lambda_{\gamma Z}$ 8 2 - - 1.3 $\bar{\chi} = 6$ - - $10-20$ - $3.5-7$ - - $1.5-3$ - - $13-28$ - - $6.5-14$ - $3.3-7$ - - $18-58$ - - - - - 6-19 - $12-38$ - - - - - 6-19 - 3.3 - - - - - 6-19 - 3.3 - - - - - - 6-19 9 - - - - - - - - 8 - - - - - - - - - <td>Status Deduced size of uncertainty to increase total uncertainty 2014 by \$\$10% for 300 fb^{-1} by \$\$10% for 3000 fb^{-1} [10-12] κ_{gZ} λ_{gZ} $\lambda_{\gamma Z}$ κ_{gZ} λ_{gZ} λ_{tg} 8 2 - - 1.3 $\bar{\chi}_{eG}$ $\bar{\chi}_{eZ}$ λ_{rZ} λ_{tg} 9 - - - - - - - - 9 - - - - - - - - 9 - - - - - - - - 10-20 - 3.5-7 - - 1.5-3 - - - 13-28 - - 6.5-14 - 3.3-7 - - - 12-38 - - - - 6-19 - - - - - 9 - - - - - - - 3 3 - - - - - - - <t< td=""></t<></td>	Status Deduced size of uncertainty to increase total uncertainty 2014 by \$\$10% for 300 fb^{-1} by \$\$10% for 3000 fb^{-1} [10-12] κ_{gZ} λ_{gZ} $\lambda_{\gamma Z}$ κ_{gZ} λ_{gZ} λ_{tg} 8 2 - - 1.3 $\bar{\chi}_{eG}$ $\bar{\chi}_{eZ}$ λ_{rZ} λ_{tg} 9 - - - - - - - - 9 - - - - - - - - 9 - - - - - - - - 10-20 - 3.5-7 - - 1.5-3 - - - 13-28 - - 6.5-14 - 3.3-7 - - - 12-38 - - - - 6-19 - - - - - 9 - - - - - - - 3 3 - - - - - - - <t< td=""></t<>

Target precision challenges theory prediction

- PDF: need 3÷6 times reduction in uncertainty
- NNLO + PS needed (e.g. ttH)
- role of non perturbative QCD?
- need to minimise impact of theory uncertainty

O(1%) precision remains a challenging task

HL-LHC: Higgs factory

 $3 \text{ ab}^{-1} \iff 150 \text{M} (\text{ggF+ttH}) + 10 \text{M} (\text{VH+VBF})$

- each production mode from golden channels
- rare production & decay modes

Category	Rate	Purity
ttH-like	37	80%
ZH-like	5.7	75%
WH-like	80	30%
VBF-like	100	50%
ggF-like	6000	60%

ATL-PHYS-PUB-2013-004 ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002 CMS, CERN-LHCC-P-008

Production	δμ	significance
VBF	[9,15]%	observed
ttH	[10,16]%	observed
НН	~50%	2÷3 σ

Decay	δμ	significance
H→µµ	[10,16]%	~7 σ
H→Zγ	[20,30]%	~4 σ

H→ZZ ⊏

What can we learn from this?

- What information can be extracted from this data?
 - (in lack of direct evidence...) which implications on new physics?
- How does it compare with a concurrent FCC-ee?
 - is there complementarity? or redundancy $(I/\sqrt{N_{exp}})$? or none?

Mass (m_H)

No compelling theoretical need for such a precision. (but who knows...)

Stability bound:

Snowmass, arXiv:1310.8361 Gupta et al. PRD 88 055024 (2013)

Width (Γ_H)

ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002

No direct measurement if $\Gamma_H \sim \Gamma_{SM} = 4.2 \text{ MeV}$

• only lower bounds allowed from $\sigma \times BR$:

 $(1 \pm \delta \mu) \cdot (\Gamma_i \times \mathrm{BR}_f)_{\mathrm{SM}} = \Gamma_i \times \mathrm{BR}_f \leq \Gamma_i$

- need extra model assumptions
- constraint from bkg interference:

	95% U.L.
Invisible only	[6,17]%
Constrained fit $(K_V \leq I)$	[7,14]%

ATL-PHYS-PUB-2014-016

Width (Γ_H)

ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002

No direct measurement if $\Gamma_H \sim \Gamma_{SM} = 4.2 \text{ MeV}$

• only lower bounds allowed from $\sigma \times BR$:

 $(1 \pm \delta \mu) \cdot (\Gamma_i \times \mathrm{BR}_f)_{\mathrm{SM}} = \Gamma_i \times \mathrm{BR}_f \leq \Gamma_i$

- need extra model assumptions
- constraint from bkg interference:

	95% U.L.
Invisible only	[6,17]%
Constrained fit $(K_V \leq I)$	[7,14]%

From µ's to couplings

• Parametrise μ_i^f with coupling constant modifiers (κ)

extract from combined fit

$$\mu$$
's unchanged by $\kappa_i \rightarrow \varsigma \kappa_i \quad \kappa_H \rightarrow \varsigma^2 \kappa_H$

- Only ratios of κ's + one μ can be fitted
 - to remove flat direction need assumptions.
 - $e.g. BR_{BSM} = 0$
 - e.g. upper limit on vector coupling
 - e.g. symmetrise unobservable couplings (e.g. $K_t = K_c = K_u$)

Couplings: global fit

* [no theory, full theory]

**[1/2 theory & $1/\sqrt{L}$ sys., Run 1 syst.]

ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002

	Κ _Υ	Κw	Κz	Kg	Kb	Kt	Kτ	κ _{Zγ}	Kμ	BR _{BSM}
ATLAS*	[4,5]	[4,5]	[4,4]	[5,9]	[10,12]	[8,11]	[9,10]	[14,14]	[7,8]	[10,14]
CMS**	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]	[7,11]

Couplings: global fit

* [no theory, full theory]

**[1/2 theory & $1/\sqrt{L}$ sys., Run 1 syst.]

ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002

	Κ _Υ	Κw	Κz	Kg	Kb	Kt	Kτ	K _{ZY}	Kμ	BR _{BSM}
ATLAS*	[4,5]	[4,5]	[4,4]	[5,9]	[10,12]	[8,11]	[9,10]	[14,14]	[7,8]	[10,14]
CMS**	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]	[7,11]

Not best ttH/VH(bb) analysis projected by ATLAS No VBF(bb)

ttH(bb) + ttH($\gamma\gamma$) Adding ttH(WW): 7% \rightarrow 4%

C. Botta, Moriond2013

Only VBF(ττ) projected by ATLAS (x2 from ggF)

New CMS projection: 5%

CMS, CERN-LHCC-P-008

Couplings: global fit

* [no theory, full theory]

ATL-PHYS-PUB-2014-016 CMS-NOTE-13-002

**[1/2 theory & $1/\sqrt{L}$ sys., Run 1 syst.]

	Κ _Υ	K₩	Κ _Z	Kg	Kb	Kt	Kτ	K _{ZY}	Kμ	BR _{BSM}
ATLAS*	[4,5]	[4,5]	[4,4]	[5,9]	[10,12]	[8,11]	[9,10]	[14,14]	[7,8]	[10,14]
CMS**	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]	[7,11]

15

Optimistic scenario:

5%

-	δκ/κ	
Κν, Κγ	3%	Gauge bosons
Kb	4%	Bottom Yukawa
Kt	5%	Top Yukawa
Kτ	3%	Leptons

2nd family

Kμ

Coupling measurements at FCC-ee

Comparing to FCC-ee with 2.5×4 ab⁻¹ at 240 GeV (TLEP)

- inclusive production cross section measurable to ~1%
- all decay modes accessible
 - good b/c separation from vertex detector

Direct measurement of K's from $\sigma(ZH), \sigma(ZH)BR_X, \Gamma_H$

arXiv:1308.6176

	TLEP 240	ILC 250
$\sigma_{ m HZ}$	0.4%	2.5%
$\sigma_{\rm HZ} imes { m BR}({ m H} o { m b} { m ar b})$	0.2%	1.1%
$\sigma_{ m HZ} imes { m BR}({ m H} ightarrow { m car c})$	1.2%	7.4%
$\sigma_{\rm HZ} imes { m BR}({ m H} o { m gg})$	1.4%	9.1%
$\sigma_{\rm HZ} imes { m BR}({ m H} o { m WW})$	0.9%	6.4%
$\sigma_{\rm HZ} imes { m BR}({ m H} o au au)$	0.7%	4.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm ZZ})$	3.1%	19%
$\sigma_{\rm HZ} imes { m BR}({ m H} o \gamma \gamma)$	3.0%	35%
$\sigma_{\rm HZ} imes { m BR}({ m H} o \mu\mu)$	13%	100%

Limited by BR

Snowmass, arXiv:1310.8361

Results

Light quarks Yukawa

- $H \rightarrow cc$ challenging at LHC
 - recast VH→bb analysis into VH→cc

$$\mu_b = \frac{\sigma BR_b}{[\sigma BR_b]^{SM}} \to \mu_b + \left(\frac{\epsilon_{c_1}\epsilon_{c_2}}{\epsilon_{b_1}\epsilon_{b_2}}\right) \frac{BR_c^{SM}}{BR_b^{SM}} \mu_c$$

• from radiative decay $H \rightarrow J/\psi \gamma$ $\downarrow \mu \mu$

- What about even-lighter quarks?
 - radiative decays e.g. $H \rightarrow \Phi \gamma$
 - sensitive to K_s through interference

$$\frac{\mathrm{BR}_{h\to\phi\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma}[(3.0\pm0.3)\kappa_{\gamma}-0.78\bar{\kappa}_{s}]\times10^{-6}}{0.57\bar{\kappa}_{b}^{2}}$$

FCC-ee: 2nd generation quark Yukawa. Lighter quarks out-of-reach.

Implications on **BSM**

Coupling measurements can constrain BSM

- need enough accuracy to identify deviations
- each model has its own pattern of deviations

Gupta et al. PRD 86 095001 (2012) Peskin, HL-LHC Workshop May15

Rare processes: semi-hadronic decays

Exclusive semi-hadronic decays (Z/W+meson)

- suppressed by $(f_P/v)^2$
- complementary to $H \rightarrow VV^*$

$$\mathcal{A}_{V}^{\mathcal{F}} = C_{V} g_{V}^{2} m_{V} \frac{\varepsilon_{\mu} J_{\nu}^{\mathcal{F}}}{(q^{2} - m_{V}^{2})} [f_{1}^{V}(q^{2})g^{\mu\nu} + f_{2}^{V}(q^{2})q^{\mu}q^{\nu} + f_{3}^{V}(q^{2})(p \cdot q g^{\mu\nu} - q^{\mu}p^{\nu}) + f_{4}^{V}(q^{2})\epsilon^{\mu\nu\rho\sigma}p_{\rho}q_{\sigma}]$$

h

BR_{SM} (W⁻D^{*}) ~10⁻⁵ \Rightarrow O(100) events in VBF

VP mode	\mathcal{B}^{SM}	VP* mode	\mathcal{B}^{SM}
$W^-\pi^+$	0.6×10^{-5}	$W^- ho^+$	0.8×10^{-5}
W^-K^+	$0.4 imes10^{-6}$	$Z^0\phi$	2.2×10^{-6}
$Z^0\pi^0$	0.3×10^{-5}	$Z^0 \rho^0$	1.2×10^{-6}
$W^-D_s^+$	2.1×10^{-5}	$(W^{-}D_{s}^{*+})$	3.5×10^{-5}
$W D^+$	$0.7 imes 10^{-6}$	W D*+	1.2×10^{-6}
$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	2.2×10^{-6}

G. Isidori et al. PLB 728 (2014) 131

No conclusive studies yet. BR ~10⁻⁵ may be detectable at HL-LHC

q

FCNC from the Yukawa sector

- FC currents from Htq interaction highly suppressed in SM
 - $BR(t \rightarrow cH) < 10^{-15}$
 - appear naturally in BSM (QS, 2HDM)
- Search for FC decays of top quarks
 - **profit from large \sigma(pp \rightarrow tt)**
 - 3×10^9 top pairs \Rightarrow BR~10⁻⁶ with ~10%

BR~10⁻⁴ could be detectable. [FCC-ee: higher sensitivity to Ztq]

P. Azzi, FCC-ee Workshop, Pisa 2015

FCNC from the Yukawa sector

Aguilar-Saavedra, Acta Phys.Polon. B35:2695-2710 (2004)

	\mathbf{SM}	\mathbf{QS}	2HDM	FC $2HDM$	MSSM	∦ SUSY
$t \rightarrow uZ$	$8 imes 10^{-17}$	$1.1 imes 10^{-4}$	_	_	$2 imes 10^{-6}$	$3 imes 10^{-5}$
$t ightarrow u \gamma$	$3.7 imes10^{-16}$	$7.5 imes 10^{-9}$	_	_	$2 imes 10^{-6}$	1×10^{-6}
t ightarrow ug	$3.7 imes 10^{-14}$	$1.5 imes 10^{-7}$	_	_	8×10^{-5}	$2 imes 10^{-4}$
$t \to u H$	$2 imes 10^{-17}$	$4.1 imes 10^{-5}$	$5.5 imes10^{-6}$	_	10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	$1.1 imes 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 imes 10^{-6}$	$3 imes 10^{-5}$
$t ightarrow c \gamma$	$4.6 imes 10^{-14}$	$7.5 imes10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$2 imes 10^{-6}$	1×10^{-6}
t ightarrow cg	$4.6 imes 10^{-12}$	$1.5 imes 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	$2 imes 10^{-4}$
$t \to c H$	$3 imes 10^{-15}$	$4.1 imes 10^{-5}$	$1.5 imes 10^{-3}$	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

$$g_{qt} \simeq \frac{\sqrt{m_q m_t}}{M_W}$$

BR~10⁻⁴ maybe not enough...

HH production

Unique access to self-coupling

- σ_{SM} ~ 40 fb
- destructive interference with Yukawa-mediated diagrams
 - reduced sensitivity to λ

HH production

HVV tensor structure

Resolving the ggH vertex

Top-partners and anomalous y_t could compensate in $\Gamma(H \rightarrow gg)$

▶ disentangle top Yukawa and new T particles using high-p_T Higgs

CP mixing

27

• CP-mixing better measurable in fermion decays

- CP-odd component suppressed in H→VV
- τ's are ideal polarimeters.
 [easier in cleaner e⁺e⁻ colliders]

• @LHC: use ggF+2j prodcution

CP-odd operator not suppressed in loop

$\delta \alpha \sim 5 \div 10$ deg could be achievable (no projections yet)

 $\begin{array}{c} \cos \alpha \, y_f \bar{\psi}_f \psi_f h + \sin \alpha \, \widetilde{y}_f \bar{\psi}_f i \gamma_5 \psi_f h \\ \hline \\ Collider & \delta \alpha \\ \hline \\ ILC & 5^\circ \\ \hline \\ HL-LHC & II^\circ \\ \hline \\ decays \end{array}$

Extra Higgs bosons

What if Higgs sector is not minimal (MSSM)?

- e⁺e⁻ colliders limited in direct searches
- several channels open in pp collisions
 - interplay between channels

Djouadi et al., arXiv:1502.05653

60 50 **hMSSM** A/H → π 40 30 LHC 14 TeV 3000 fb⁻¹ H⁺→τ⁺ν 20 H[±] → tb H→WW 10 tanβ 7 6 5 H→ZZ 4 A→Zh 3 H→hh 2 ---- A/H → tť 1 100 500 600 700 200 400 300 1000 M₄ (GeV) **Searches for H/A/H[±] decays**

Decoupling regime \Rightarrow need for direct searches FCC-ee limited by \sqrt{s}

Conclusions

- HL-LHC will dramatically improve current Higgs measurements precision and open new channels
 - theoretical uncertainties (pQCD+PDF) will eventually saturate precision
 - superior performances a FCC-ee manifest in coupling extraction
 - most noteworth: model-independent measurement of Γ_H
- HL-LHC / FCC-ee are comparable for...
 - rare decays $(H \rightarrow \gamma \gamma, Z \gamma, \mu \mu)$, HVV amplitude studies, CP-odd phase

• HL-LHC / FCC-ee are complementary for...

- 2nd/3rd generation Yukawa
- Higgs self-coupling
- SM-suppressed processes (FCNC, LFV, semi-hadronic decays)
- new Higgs particles

Thanks for your attention

Framework for HL-LHC projections

	Н-→үү	H→ZZ	H→WW	Η→ττ	H→bb	Н→Ζγ	Η→μμ
gg→H / inclusive	ATLAS CMS	ATLAS CMS	ATLAS CMS	CMS?	-	ATLAS CMS	ATLAS CMS
VBF	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS	-	ATLAS CMS	ATLAS CMS
VH	ATLAS CMS	ATLAS CMS	CMS	CMS	ATLAS CMS		CMS
ttH	ATLAS CMS	ATLAS CMS	CMS	ATLAS CMS	CMS		ATLAS

Experimental challenges

 $\eta(j_2)$

Theory uncertainty

Theory uncertainties: VH

NLO MCs reweighted to best accuracy

- QCD @NNLO and EWK @NLO
- both qqVH and ggZH productions
- uncertainty on acceptance increased by analysis cuts (pT^V, N_{jet})
 - further enhanced in most senitive BDT bins

ATLAS, JHEP 01 (2015) 069

Projections: HL-LHC

35

Run I:	exp.	obs.
CMS	2.Iσ	2.Iσ
ATLAS	2.6σ	Ι.4σ

CMS, NOTE-13-02 (2013)

CMS Projection

ATLAS projection:

- at first sight, different conclusion, but:
 - not best analysis projected (x2 worse than Runl legacy)
 - no Z(vv) channel either
- largest uncertainties from:
 - signal acceptance (PDF, PS, scale)
 - ttbar and W+bb modeling

CMS projection:

• $\Delta \mu/\mu$: 7% \rightarrow 4% w/o theo. unc.

ATLAS Simulation Preliminary

√s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹

Experimental challenges: PU jets

VBF-like selection based on forward/backward di-jet pairs

fake VBF signature from pile-up jets

PU-jets superimposed (8 TeV template)

ATL-PHYS-PUB-2014-018

Friday, September 25, 15

 $|\eta| < 4.0$

0.16

0.12

0.08

Theory uncertainties

The VBF selection: • cutting on $ \Delta \eta_{ij} $ and/or m_{ij} • veto events w/ $p_T^{j3} > 30$ GeV) • ATLAS uses MVA • $\Delta \eta_{ij}, m_{jj}, \eta_{j1} \times \eta_{j2},$					VBF 100 75 50 25 0 "Loose"	GGF
NLO MC	Scale	PDF	Parton show (PYTHIA vs H	ver erwig)	Generator modeling (powheg vs aMC@NLO)	тот
VBF	•3% QCD •2% EWK	•3% (incl.) •1% (acc.)	up to 8%	5	2%	~6%
gg→H	23%	6%	up to 9%	5	4÷30%	~30÷ 40%
ncreasi	ng with 2	η _{jj}			$\Delta \mu_{ggF} \sim \Delta \mu_{VBF}$	
high-x	partons)	Sizab depo	le model- endence 37	Tigh Can	iter VBF cuts will help. model dependence be	reduced?

Projections: H→TT

CMS Projection

Run I:	exp.	obs.
CMS	3.7σ	3.2σ
ATLAS	3.4σ	4.5σ

- CMS projections:
 - assume same cuts and efficiency
 - same di-tau mass resolution

 $(\Delta \mu / \mu)_{stat. + syst.} \sim 5\%$ $(\Delta \mu / \mu)_{theor.} \sim 6\%$

- ATLAS projections:
 - consider only VBF $H \rightarrow \tau_h \tau_l$
 - ~2 worse than full result
 - PU jets from 8 TeV template
 - theor. unc. relevant if substantial PU mitigation is possible
 - otherwise limited by systematic

The HL-LHC

Can reach O(5%) precision on most of the Higgs couplings

- necessary (but not sufficient) condition: maintain detector performances
- Iuminosity increase and reduction of theory systematics complementary

Theory uncertainties: VH

		Event yield uncertainty	Individual contribution	Effect of removal
Source	Туре	range (%)	to μ uncertainty (%)	on μ uncertainty (%)
b-tagging	shape	3–15	10.2	2.1
Signal cross section (scale and PDF)	norm.	4	3.9	0.3
Signal cross section ($p_{\rm T}$ boost, EW/QCD)	norm.	2/5	3.9	0.3
Monte Carlo statistics	shape	1–5	13.3	3.6
Backgrounds (data estimate)	norm.	10	15.9	5.2
Single-top-quark (simulation estimate)	norm.	15	5.0	0.5
Dibosons (simulation estimate)	norm.	15	5.0	0.5
MC modeling (V+jets and tt)	shape	10	7.4	1.1
CMS, PRD 89 012003 (2014		41		

Friday, September 25, 15

Background shape uncertainties

CMS:

take envelope between BDT outputs from independent MCs

The uncertainty in the background event yields estimated from data is approximately 10%. For V+jets, the difference between the shape of the BDT output distribution for events generated with the MADGRAPH and the HERWIG ++ Monte Carlo generators is considered as a shape systematic uncertainty. For tt the differences in the shape of the BDT output distribution between the one obtained from the nominal MADGRAPH samples and those obtained from the POWHEG and MC@NLO [60] generators are considered as shape systematic uncertainties.

77

ATLAS:

- assess uncertainty on modeling of BDT input variables
 - m_{bb} , p_T^V , N_{jet}

• Details of the assessment of systematic uncertainties are provided below in the context of the MVA. When systematic uncertainties are derived from a comparison between generators, all relevant variables are considered independently. The variable showing the largest discrepancy in some generator with respect to the nominal generator is assigned an uncertainty covering this discrepancy, which is symmetrised. If, once propagated to the BDT_{VH} discriminant, this uncertainty is sufficient to cover all variations observed with the different generators, it is considered to be sufficient. If not, an uncertainty is considered in addition on the next most discrepant variable and the procedure is iterated until all variations of the BDT_{VH} discriminant are covered by the assigned uncertainties.

PU jets suppression

Already studied and deployed in Run I

- PU-jet rejection mandatory to preserve acceptance
 - 90% bkg rejection at negligible signal loss within tracker

p_⊤ cut for less than X% fake rate

	Eta	10% (GeV)	1% (GeV)	
C	0–2.1	60 (30)	80 (40)	
	2.1–2.8	50	80	
	2.8–3.2	50	80	
	3.2–4.5	30	50	

Impact of extended PU rejection

Extension of tracking to forward region

performances dramatically improved by larger tracking coverage

ATL-PHYS-PUB-2014-018

forward pile-up jet rejection	50%	75%	90%
forward tracker coverage		$\Delta \mu$	
Run-I tracking volume		0.24	
$ \eta < 3.0$	0.18	0.15	0.14
$ \eta < 3.5$	0.18	0.13	0.11
$ \eta < 4.0$	0.16	0.12	0.08

Extension of tracker coverage can provide up to 3 times smaller Δμ !!

Also studied by CMS for Phase2 upgrade

forward pixel disks and timing in pre-shower

The top quark Yukawa coupling

Precise knowledge of Yukawa coupling y_t crucial for characterization of H(125)

- no partial width $\Gamma_{H \rightarrow tt}$
 - off-shell H→tt through gg→tt interference?
 Maybe, but very hard

	H→ZZ*/WW	/*/ff	Н→үү	
σ(рр→Н)	Kt ²	[<mark>loop</mark>]		
σ(pp→ttH)	Kt ²	[<mark>tree</mark>]	$ \mathbf{K}_{t}\mathcal{M}_{a} + \mathbf{K}_{V}\mathcal{M}_{b} ^{2}$	[<mark>loo</mark> p]
σ(pp→tH)	$ \mathbf{K}_{t}\mathcal{M}_{a} + \mathbf{K}_{V}\mathcal{M}_{b} ^{2}$	[tree]		

ttH: theoretical developments

	Accuracy	Some references
	NLO	PRL 87 (2001) 201805 NPB 653 (2003) PRD 68 (2003) 034022
Signal	bkg interference	arXiv:1412.5290
modeling	EWK corrections	arXiv:1504.03446
	NLO + PS	aMC@NLO+PYTHIA Sherpa+OpenLoops POWHEG+HELAC
	tt+bb @NLO	PRL 103 (2009) 012002
Background modeling	tt+bb @NLO + PS (4FS, 5FS)	PLB 734 (2014) 210 JHEP 07 (2014) 135 JHEP 1503 (2015) 083
	tt+jj @NLO	PRD 84 (2011) 114017
	tt+jj @NLO + PS	arXiv:1402.6293

Run I at a glance

JHEP 09 (2014) 08	87 PLB 740	(2015) 222 ATLA	S, arXiv:1503.05066
$ \begin{array}{c} CMS \forall s = 7 \text{ lev}, 5.0\text{-}5.1 \text{ fb} \ ; \forall s = 8 \\ \hline H \\ H$	Expected	$\begin{array}{c} ATLAS \\ 2011-2012 \\ Ldt = 4.5 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV} \\ Ldt = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \end{array}$	t. ATLAS $\sqrt{s}=8 \text{ TeV}$, 20.3 fb ⁻¹ – tith (1-bb) (tot) (stat) 4 4 2.8 ± 2.0 (1.4) – $H \rightarrow bb$
5 CMS, 4 3 2 2		eliminary $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fm}$ $\sqrt{s} = 8 \text{ TeV}, 20.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4 5 μ _{tī} Η	Combined $H \rightarrow WW$ $ATL_{2.T}$ $H \rightarrow WW$ $h \rightarrow H$ $ATL_{2.T}$ $h \rightarrow H$	ONF-2015-006
	Experiment	obs. (exp.) limit 95% CL	best-fit value (±Ισ)
$H \rightarrow badrops$	CMS	4.1 (3.5)	0.7 +1.9
n / naurons	ATLAS	3.4 (2.2)	I.5 ^{+1.1} -1.1
	CMS	7.4 (4.7)	2.7 ^{+2.6} -1.8
n - photons	ATLAS	6.7 (4.9)	I.4 ^{+2.1} -1.4
	CMS	6.6 (2.4)	3.7 ^{+1.6} -1.4
$H \rightarrow ieptons$	ATLAS	47 7.7 (2.4)	2.1 ^{+1.4} -1.2

Rare processes: semi-hadronic decays

Exclusive semi-hadronic decays (V+meson)

- suppressed by (f_P/v)²
- complementary to $H \rightarrow VV^*$
 - e.g. in EFT approach:

 $\frac{\Gamma(h \to VP)}{\Gamma(h \to VP)^{\text{SM}}} = \frac{|c_1|}{|c_2|(c_2 + c_3)|^2} \qquad \qquad \mathcal{O}_W = \frac{g_2 c_2}{v} h D_\mu W_a^{\mu\nu} \operatorname{Tr}[\Sigma^{\dagger} i \tau^a \overleftrightarrow{D}_\nu \Sigma],$ $\mathcal{O}_{W\partial H} = \frac{g_2 c_3}{v} (\partial_\nu h) W_a^{\mu\nu} \operatorname{Tr}[\Sigma^{\dagger} i \tau^a \overleftrightarrow{D}_\mu \Sigma].$

h

$BR_{SM} \sim 10^{-5} \Rightarrow O(100)$ events in VBF

VP mode	\mathcal{B}^{SM}	VP* mode	\mathcal{B}^{SM}
$W^-\pi^+$	0.6×10^{-5}	$W^- ho^+$	$0.8 imes 10^{-5}$
W^-K^+	0.4×10^{-6}	$Z^0\phi$	2.2×10^{-6}
$Z^0\pi^0$	0.3×10^{-5}	$Z^0 \rho^0$	1.2×10^{-6}
$W^-D_s^+$	2.1×10^{-5}	$(W^{-}D_{s}^{*+})$	3.5×10^{-5}
$W D^+$	0.7×10^{-6}	W D*+	1.2×10^{-6}
$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	2.2×10^{-6}

G. Isidori et al. PLB 728 (2014) 131

48

No conclusive studies yet, but BR ~10⁻⁵ may be detectable at HL-LHC

Extra Higgs bosons

h(125) coupling fit

Direct H/A/H[±] searches

