Higgs Physics at the ILC

Tim Barklow (SLAC) Sep 24, 2015 FCC-ee Workshop on Higgs Physics ILC International Linear Collider e^+e^- linear collider with Superconducting RF linac $250 \le \sqrt{s} \le 500$ GeV 31 km in length

ILC Machine Parameters from TDR

			Baseline 500 GeV Machine		aseline 500 GeV Machine L Upgrade		$E_{\rm CM}$ U	pgrade
Center-of-mass energy	$E_{\rm CM}$	GeV	250	350	500	500	A 1000	B 1000
Collision rate	f_{rep}	Hz	5	5	5	5	4	4
Electron linac rate	f_{linac}	Hz	10	5	5	5	4	4
Number of bunches	$n_{\rm b}$	10	1312	1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{\rm b}$	ns	554	554	554	366	366	366
Puise current	Ibeam	mA	5.8	5.8	5.8	8.8	1.0	1.0
Main linac average gradient	$G_{\mathbf{a}}$	MV m ⁻¹	14.7	21.4	31.5	31.5	38.2	39.2
Average total beam power	Pbeam	MW	5.9	7.3	10.5	21.0	27.2	27.2
Estimated AC power	P_{AC}	MW	122	121	163	204	300	300
DMS bunch longth	-		0.3	0.3	0.3	0.3	0.250	0.225
Electron DMS energy spread	$\Delta n/n$	0/	0.100	0.158	0.124	0.124	0.083	0.085
Positron PMS energy spread	$\Delta p/p$	%	0.150	0.100	0.070	0.070	0.043	0.005
Electron polarization	$\frac{\Delta p}{P}$	%	80	80	80	80	80	80
Positron polarization	P_{+}	%	30	30	30	30	20	20
								10
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10	10
vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	35	30	30
IP horizontal beta function	β_x^*	mm	13.0	16.0	11.0	11.0	22.6	11.0
IP vertical beta function	β_y^*	mm	0.41	0.34	0.48	0.48	0.25	0.23
ID DMS horizontal beam size	<i>a</i> *	000	720.0	683.5	474	474	481	335
ID DMS vertical beam size	σ*	nm	77	5.0	50	50	2.8	27
IF KING Vertical dealth Size	0 y		1.1	3.9	5.5	3.5	2.0	2.1
Luminosity	L_{-}	$ imes 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	0.75	1.0	1.8	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%	58.3%	59.2%	44.5%
Average energy loss	δ_{BS}		0.97%	1.9%	4.5%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	N_{pairs}	×10 ³	62.4	93.6	139.0	139.0	200.5	382.6
Total pair energy per bunch crossing	E_{pairs}	TeV	46.5	115.0	344.1	344.1	1338.0	3441.0

Note there are two types of upgrades:

Luminosity upgrade: Install extra klystrons and modulators so number of bunches can be doubled; envisioned after 8 years of baseline running

Energy upgrade: Increase accel. gradient, lengthen linac, or both. TDR config assumes 49 km. length; envisioned after 20 years of running

Luminosity Upgrade for Ecm=250 GeV

			Baseline ILC	Lumi Upgrade
Center-of-mass energy	$E_{\rm CM}$	GeV	250	250
Collision rate	$f_{\rm rep}$	Hz	5	10
Electron linac rate	f_{linac}	Hz	10	10
Number of bunches	$n_{ m b}$		1312	2625
Pulse current	$I_{\rm beam}$	mA	5.8	8.75
Average total beam power	$P_{\rm beam}$	MW	5.9	21
Estimated AC power	$P_{\rm AC}$	MW	129	200
Luminosity	L	$ imes 10^{34}{ m cm}^{-2}{ m s}^{-1}$	0.75	3.0

The $\sqrt{s} = 250$ GeV lumi is quadrupled by doubling the number of bunches *and* the collision rep rate

The 10 Hz operation which in the baseline was split between 5 Hz collision and 5 Hz e^+ production is now 100% collision in the lumi upgrade config. A longer undulator should be ready that can produce sufficient e^+ yield with 125 GeV electrons

Note the AC power is 200 MW, the same as the 5 Hz lumi upgrade power at $\sqrt{s} = 500$ GeV. Also note that ILC produces 3×10^{34} cm⁻²s⁻¹ luminosity with 200 MW total AC power.

Full Simulation Performed with ILD and/or SiD Detector

SiD Global Parameters

Detector	Technology	Radius (m)		Axial	(z) (m)
		Min	Max	Min	Max
Vertex Detector	Pixels	0.014	0.06		0.18
Central Tracking	Strips	0.206	1.25		1.607
Endcap Tracker	Strips	0.207	0.492	0.85	1.637
Barrel Ecal	Silicon-W	1.265	1.409		1.765
Endcap Ecal	Silicon-W	0.206	1.25	1.657	1.8
Barrel Hcal	RPCs	1.419	2.493		3.018
Endcap Hcal	RPCs	0.206	1.404	1.806	3.028
Coil	5 tesla	2.591	3.392		3.028
Barrel Iron	RPCs	3.442	6.082		3.033
Endcap Iron	RPCs	0.206	6.082	3.033	5.673

Combining barrel and endcaps these trackers and calorimeters cover $|\cos \theta| \le 0.99$

LumiCal and BeamCal are used for $|\cos \theta| > 0.99$

Pulsed power is possible due to low duty cycle 5 Hz rep rate: eliminates need for cooling 7

500 GeV ILC Operating Scenarios arXiv: 1506.07830 Construct 500 GeV from start

- 500 GeV scenarios study
 - TDR Baseline
 - Emphasizes higher energy strength of ILC
- Study parameters
 - assume 20 years of operation
 - compare 3 scenarios (studied more)
 - G20, H20, I20
 - Snowmass white paper studied also for comparison
 - arXiv:1310.0763 [hep-ph]

Assumptions

- Full calendar year is assumed to be 8 months at a 75% efficiency (the RDR assumption). This corresponds to Y = 1.6 x 107 seconds of integrated running. (significantly higher than a Snowmass year of 107 seconds.)
- A **ramp-up** of luminosity performance is in general assumed after:
 - (a) initial construction and after 'year o' commissioning;
 - (b) after a downtime for a luminosity upgrade;
 - (c) a change in operational mode which may require some learning curve (e.g. going to 10-Hz collisions).
- For initial physics run *after construction and year o commissioning*, the RDR ramp of 10%, 30%, 60% and 100% is assumed over the first four years.
- The ramp *after the shutdowns for installation of the luminosity upgrade* is assumed slightly shorter (10%, 50%, 100%) with no year 0.
- Going down in centre of mass energy from 500 GeV to 350 GeV or 250 GeV is assumed to have no ramp, since there is no machine modification.
- Going to 10-Hz operation at 50% gradient does assume a ramp (25%, 75%, 100%), since 10-Hz affects the entire machine.
- A major 18 month shutdown is assumed for the luminosity upgrade.
- Unlike TDR: 10-Hz and 7-Hz operation assumed at 250 GeV and 350 GeV

Preferred Scenario

	\sqrt{s}	∫ <i>£dt</i>	Lpeak	Ramp				Т	T _{tot}	Comment
	[GeV]	$[fb^{-1}]$	$[fb^{-1}/a]$	1	2	3	4	[a]	[a]	
Physics run	500	500	288	0.1	0.3	0.6	1.0	3.7	3.7	TDR nominal at 5 Hz
Physics run	350	200	160	1.0	1.0	1.0	1.0	1.3	5.0	TDR nominal at 5 Hz
Physics run	250	500	240	0.25	0.75	1.0	1.0	3.1	8.1	operation at 10 Hz
Shutdown								1.5	9.6	Luminosity upgrade
Physics run	500	3500	576	0.1	0.5	1.0	1.0	7.4	17.0	TDR lumi-up at 5 Hz
Physics run	250	1500	480	1.0	1.0	1.0	1.0	3.2	20.2	lumi-up operation at 10 Hz

Table 7: Scenario H-20: Sequence of energy stages and their real-time conditions.

H-20

	first phase	lumi upgrade	total	Snowmass Lum-up [†]
250 GeV	500 fb⁻1	1500 fb-1	2 ab⁻1	1.15 ab-1
350 GeV	200 fb-1		0.2 ab ⁻¹	
500 GeV	500 fb⁻1	3500 fb-1	4 ab⁻¹	1.6 ab⁻1
time	8.1 yrs	10.6 yrs	20.2 yrs*	

* includes 1.5 years for luminosity upgrade

† ILC Higgs whitepaper: arXiv:1310.0763

Higgs Physics at the ILC

ILC Measurement of
$$\sigma(e^+e^- \rightarrow ZH)$$
 $\sqrt{s} = 250 \text{ GeV}$

Higgs Recoil Measurement of Higgs Mass and Higgstrahlung Cross Section

ILC: $\Delta M_{H} = .032 \text{ GeV}, \ \Delta \sigma_{HZ} / \sigma_{HZ} = 2.5\% \text{ for } L= 250 \text{ fb}^{-1}$ $\Delta M_{H} = .015 \text{ GeV}, \ \Delta \sigma_{HZ} / \sigma_{HZ} = 1.2\% \text{ for } L=1150 \text{ fb}^{-1}$ $\sigma_{HZ} \sim g_{HZZ}^{2}$ $\Rightarrow \Delta g_{HZZ} / g_{HZZ} = 1.3\% (0.6\%) \text{ for } L=250 (1150) \text{ fb}^{-1}$

$$e^+e^- \rightarrow ZH$$
, $\nu\nu H \sqrt{s} = 350 \text{ GeV}$

All of the Higgstrahlung studies that were done at $\sqrt{s} = 250$ GeV can also be done at $\sqrt{s} = 350$ GeV. Precisions for $\sigma \cdot BR$ are comparable, as is the precision for $\sigma(ZH)$ once $Z \rightarrow q \bar{q}$ decays are included.

WW fusion production of the Higgs at $\sqrt{s} = 350$ GeV provides a much better measurement of g_{HWW} compared to $\sqrt{s} = 250$ GeV. This gives a much improved estimate of the total Higgs width Γ_H which in turn significantly improves the coupling errors obtained from $\sigma \cdot BR$ measurements made at $\sqrt{s} = 250$ GeV.

The recoil Higgs mass measurement is significantly worse at $\sqrt{s} = 350$ GeV with respect to $\sqrt{s} = 250$ GeV. However, there is hope that direct calorimeter Higgs mass measurements using $e^+e^- \rightarrow vvH$ will recover the precision.

The g_{HWW} coupling can also be measured well at $\sqrt{s} = 500$ GeV through WW fusion production of the Higgs. Also the measurement of $\sigma(e^+e^- \rightarrow vvH) \times BR(H \rightarrow X)$ can be made for many Higgs decay modes $H \rightarrow X$.

Through $e^+e^- \rightarrow ttH$ the top Yukawa coupling can be measured to $\Delta y_t / y_t = 16.6\%$ with 500 fb⁻¹ at $\sqrt{s} = 500$ GeV. With same luminosity at $\sqrt{s} = 550$ GeV the precision is $\Delta y_t / y_t = 6.73 \implies$ strong motivation to increase nominal energy to $\sqrt{s} = 550$ GeV

The ZHH channel is open at $\sqrt{s} = 500$ GeV. The Higgs self coupling can be measured to 27% with 4 ab⁻¹ assuming the true value is the SM value.

 $e^+e^- \rightarrow vvH$, ttH, vvHH ILC Energy Upgrade \sqrt{s} = 1 TeV

At $\sqrt{s} = 1$ TeV the ILC provides better measurements of the top Yukawa coupling and Higgs self coupling. For example the Higgs self coupling can be measured to an accuracy of 10% with 4 ab⁻¹ at $\sqrt{s} = 1$ TeV (again, assuming the true value is the SM value).

Search for additional Higgs bosons that might have been missed at LHC.

In addition, the ILC becomes a Higgs factory again since the total Higgs cross section is larger than the total cross sections at 250 GeV, specially if polarized beams are used:

Summary of ILC Higgs Measurement Precisions

From "500 GeV ILC Operating Scenarios" arXiv:1506.07830

$\int \mathcal{L} dt$ at \sqrt{s}	$250{\rm fb}^{-1}$ at	250 GeV	GeV 330fb^{-1} at 350GeV		500fb^{-1} at 500GeV		eV
$P(e^-, e^+)$		(-80%,+30%)					
production	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	Zh	$v\bar{v}h$	tīh
$\Delta\sigma/\sigma$	[39] 2.0%	-	[10,40] 1.6%	-	3.0	-	-
BR(invis.) [41]	< 0.9%	-	< 1.2%	-	< 2.4%	-	-
decay		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$					
$h \rightarrow b\bar{b}$	1.2%	10.5%	1.3%	1.3%	1.8%	0.7%	28%
$h \rightarrow c\bar{c}$	8.3%	-	9.9%	13%	13%	6.2%	-
$h \rightarrow gg$	7.0%	-	7.3%	8.6%	11%	4.1%	-
$h \rightarrow WW^*$	6.4%	-	6.8%	5.0%	9.2%	2.4%	-
$h ightarrow au^+ au^-$	[42] 3.2%	-	[43] 3.5%	19%	5.4%	9.0%	-
$h \rightarrow ZZ^*$	19%	-	22%	17%	25%	8.2%	-
$h ightarrow \gamma \gamma$	34%	-	34%	[44] 39%	34%	[44] 19%	-
$h \rightarrow \mu^+ \mu^-$ [45]	72%	-	76%	140%	88%	72%	-

For scenario H-20 with 2 ab⁻¹ at 250 GeV and 4 ab⁻¹ at 500 GeV the ILC has

$$\frac{\Delta\sigma(ZH)}{\sigma(ZH)} = 0.59\% \text{ and } \frac{\Delta\sigma(v\overline{v}H) \cdot BR(H \to b\overline{b})}{\sigma(v\overline{v}H) \cdot BR(H \to b\overline{b})} = 0.25\%$$

ILC Higgs Coupling Precision vs Time

Higgs Physics: ILC vs FCC-ee

Take FCC-ee errors on σ and σ -BR from arXiv:1308.6176 assuming 240+350 GeV with 10.0 + 2.6 ab⁻¹ :

	TLEP 240
$\sigma_{ m HZ}$	0.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm b}\bar{\rm b})$	0.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm c}\bar{\rm c})$	1.2%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm gg})$	1.4%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm WW})$	0.9%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau \tau)$	0.7%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm ZZ})$	3.1%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \gamma \gamma)$	3.0%
$\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \mu\mu)$	13%

$\sigma_{\rm WW \to H} \times B$	$R(H \rightarrow b)$	b)
\sqrt{s} (GeV)	TLEP	
240 - 250	2.2%	-
350	0.6%	_

The additional events from the Higgs-strahlung process at 350 GeV allow the statistical precision for all the aforementioned measurements to be improved by typically 5% for TLEP with respect to the sole 240 GeV data.

 Branching fraction to invisible tested directly to 0.19% @ 95% CL

Take ILC errors on σ and σ •BR from arXiv:1506.07830 assuming 250+350+500 GeV with either: 0.5+0.2+5.0 ab⁻¹ (G-20 scenario) or 2.0+0.2+4.0 ab⁻¹ (H-20 scenario)

Perform model independent fit of b,c,g,W, τ ,Z, γ , μ ,invis Higgs couplings and total width using standard program (from Michael Peskin) for ILC & FCC-ee separately and combined. ¹⁸

The coupling fit results I obtain for FCC-ee alone differ slightly from those reported in arXiv:1308.6176

	L	
Coupling	arXiv:1308.6176	My fit
$g_{\rm HZZ}$	0.15%	0.19%
<i>g</i> HWW	0.19%	0.35%
g_{Hbb}	0.42%	0.52%
$g_{\rm Hcc}$	0.71%	0.78%
$g_{ m Hgg}$	0.80%	0.85%
$g_{\rm H\tau\tau}$	0.54%	0.63%
$g_{\mathrm{H}\mu\mu}$	6.2%	6.2%
$g_{\rm H\gamma\gamma}$	1.5%	1.5%
		1

Because it is the only way to consistently combine FCC-ee and ILC results I will, for the rest of the talk, use these results for FCC-ee. The discrepancy is not understood at this time -- will try to clear it up at a later date.

ILC 250+350+500 GeV with 0.5+0.2+5.0 fb⁻¹ (G-20 scenario)

FCC-ee 240+350 GeV with $10.0 + 2.6 \text{ ab}^{-1}$

ILC + FCC-ee under the conditions listed above

ILC 250+350+500 GeV with 2.0+0.2+4.0 ab⁻¹ (H-20 scenario)

FCC-ee 240+350 GeV with $10.0 + 2.6 \text{ ab}^{-1}$

ILC + FCC-ee under the conditions listed above

*Additional FCC-ee running required to match ILC contribution to Combination. Assumes the same 10:2.6 luminosity ratio for 240:350 GeV except ZZ & invis which assume that all extra running is at 240 GeV

250:500 GeV except ZZ & invis which assumes all extra running at 250 GeV.

Highlights of Combination of FCC-ee with ILC H-20

	ILC	FCC-ee	ILC+FCC-ee
Δg_{HZZ}	0.31%	0.19%	0.16%
Δg_{HWW}	0.38%	0.35%	0.22%
Δg_{Hbb}	0.60%	0.52%	0.38%
$\Delta g_{H\tau\tau}$	0.89%	0.63%	0.49%
Δg_{Hgg}	0.92%	0.85%	0.61%

FCC-ee Higgs Self Coupling Measurement at Ecm=240 GeV

M. McCullough, arXiv:1312.3322

 $\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$

 g_{hZZ} fixed to SM value ($\delta_z = 0$) g_{hhZZ} fixed to SM value

$$\Rightarrow \delta_{H} = \frac{\delta_{\sigma}^{240}}{0.014} = \frac{0.004}{0.014} = 29\%$$

FCC-ee Higgs Self Coupling Measurement at Ecm=240 GeV

à

M. McCullough, arXiv:1312.3322

 g_{hZZ} fixed to SM value ($\delta_z = 0$) g_{hhZZ} fixed to SM value

$$\Rightarrow \delta_{H} = \frac{\delta_{\sigma}^{240}}{0.014} = \frac{0.004}{0.014} = 29\%$$

$$\delta_{\sigma}^{240} = 100 \left(2\delta_{Z} + 0.014\delta_{h} \right) \%$$

Examples of
BSM physics

with $\delta_z \neq 0$:

Coupling deviation contributes to precision electroweal Pre-LHC constraints as good as reach of LHC Higgs $\rightarrow \delta \kappa_V \lesssim 5\%$

(Not-so) Hidden New Physics

· Thus, due to extremely high precision measurements, in this very challenging scenario an e⁺e⁻ collider offers the possibility of discovering the indirect effects of hidden particles.

· Cross section at CEPC modified by:

coupling measurements

$$\delta \sigma_{Zh} = \frac{|c_{\phi}|^2}{8\pi^2} \frac{v^2}{m_h^2} \left(1 + \frac{1}{4\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}} \log \left[\frac{1 - 2\tau_{\phi} - 2\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}}{1 - 2\tau_{\phi} + 2\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}} \right] \right)$$

where $\tau_{\phi} = m_h^2/4m_{\phi}^2$ and $\delta\sigma_{Zh} = (\sigma_{Zh} - \sigma_{Zh}^{SM})/\sigma_{Zh}^{SM}$

ILC Higgs Self Coupling Measurement at Ecm=500 GeV

 g_{hZZ} fixed to value from $\sigma(ZH)$ measurement g_{hhZZ} fixed to SM value \leftarrow Needs to be more fully addressed in ILC studies Extract g_{hhh} from measurement of $\sigma(ZHH)$ using HH $\rightarrow b\overline{b}b\overline{b} \& b\overline{b}W^+W^-$

 $\frac{\Delta\sigma(ZHH)}{\sigma(ZHH)} = 16\% \implies \frac{\Delta g_{hhh}}{g_{hhh}} = 27\% \text{ for ILC scenario H-20 @ 20 years.}$

Note: This assumes SM g_{HHH} . If $g_{HHH} = 2 \times SM$ then $\frac{\Delta g_{hhh}}{g_{hhh}} = 27 \% \implies \frac{\Delta g_{hhh}}{g_{hhh}} = 14 \%$.

Other Higgs Measurements with FCC-ee & ILC H-20

	FCC-ee	ILC	
	240 +350 GeV	250 + 350 + 500(550) GeV	Combined
	$10.0+2.6 \text{ ab}^{-1}$	$2.0 + 0.25 + 4.0 \text{ fb}^{-1}$	
Δm_{H}	11 MeV	12.5 MeV	8.3 MeV
$\frac{\Delta \boldsymbol{g}_{HHH}}{\boldsymbol{g}_{HHH}}$	29 %*	27 %*	20 %
$\frac{\Delta \boldsymbol{g}_{ttH}}{\boldsymbol{g}_{ttH}}$	13%	5.9 (2.4) %	5.4 (2.4) %
$\frac{g_{eeH}}{g_{eeH}^{SM}}$	< 2.2 @ 3 σ	_	< 2.2 @ 3 o

- * Loop contribution to σ (ZH)
- * Tree-level contribution to σ (ZHH)

Summary

ILC helps FCC-ee:

- The 0.25% measurement of $\sigma(vvh)XBR(H \rightarrow bb)$ reduces errors on all Higgs couplings
- The 2.4% Top Yukawa coupling measurement from ttH production improves upon the 13% measurement from the tt threshold scan.
- ILC σ (ZHH) measurement provides a 27% tree-level determination of the Higgs selfcoupling, and could help clarify a Higgs self-coupling interpretation of the precision FCC-ee σ (ZH) measurement.

FCC-ee helps ILC:

- Precision measurement of g_{HZZ} and various σXBR at 240 GeV help turn the ILC 0.25% measurement of $\sigma(vvh)XBR(H\rightarrow bb)$ into $\Delta g_{WW} = 0.22\%$
- Much better meas. of Higgs invisible width, BSM decays, rare decays such as $\gamma\gamma$ and μμ Note: $\sum BR_i = 1$ can be used to improve all coupling errors if $\Delta BR(H \rightarrow BSM) < 1\%$
- Unique access to Higgs coupling to 1st generation fermions.
- FCC-ee+ILC combination helps the particle physics community:
 - Higgs Z coupling error $\Delta g_{HZ} = 0.16\%$
 - $\,\circ\,\,$ Higgs W coupling error $\Delta g_{WW}=0.22\%$
 - Higgs b coupling error $\Delta g_{bb} = 0.38\%$
 - $\,\circ\,\,$ Higgs self coupling error $\Delta g_{HHH}=\,20\%$