Higgs and Dark Photon Searches

Matti Heikinheimo

NICPB, Tallinn [1503.05836 [hep-ph]], Sanjoy Biswas, Emidio Gabrielli, M. H., Barbara Mele

25.09.2015

イロン 不同 とくほう イロン

-

Contents

1 Introduction

2 $e^+e^- \rightarrow H\bar{\gamma}$

Matti Heikinheimo Higgs and Dark Photon Searches

Dark Photons

- Dark photons appear in several beyond the Standard Model physics scenarios, where a new U(1) gauge group is added to the SM.
- Massive dark photons can be dark matter candidates, while massless dark photons can appear in models of self-interacting dark matter. (Cusp-vs-core, missing satellites.)
- Unbroken U(1) results in a massless dark photon.
 Motivated e.g. in a model for radiative origin of the SM Yukawa couplings. [arXiv:1310.1090 [hep-ph]]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Coupling to the SM

- Dark photons can couple to the SM particles via the kinetic mixing operator F[']_{μν}F^{μν}, or via loop-induced dimension 5 operators.
- The kinetic mixing of massless Dark Photons can be transformed away by field redefinitions. Generally this results in millicharges for the particles initially charged under the hidden U(1).
- If the tree-level kinetic mixing is set to zero, the possible loop-induced mixing vanishes on-shell.
- If there are particles charged under both the hidden and the SM U(1), there will be loop-induced couplings between the dark photon and the SM.

イロン 不同 とくほう イロン

Introduction $e^+e^- \rightarrow H\bar{\gamma}$

Coupling to the SM

Couplings to the Higgs can be generated via messenger particles charged under $U(1)' \times U(1)$.

Similar diagrams will also contribute to the $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$ decay widths. Effective Lagrangian:

$$\mathcal{L}_{\rm DP_{H}} = \frac{\alpha}{\pi} \Big(\frac{C_{\gamma\bar{\gamma}}}{v} \gamma^{\mu\nu} \bar{\gamma}_{\mu\nu} H + \frac{C_{Z\bar{\gamma}}}{v} Z^{\mu\nu} \bar{\gamma}_{\mu\nu} H + \frac{C_{\bar{\gamma}\bar{\gamma}}}{v} \bar{\gamma}^{\mu\nu} \bar{\gamma}_{\mu\nu} H \Big)$$

Higgs to New Physics Branching Ratios

э

Contents

Matti Heikinheimo Higgs and Dark Photon Searches

(日)

Higgs + Dark Photon production

The process $e^+e^- \rightarrow H\bar{\gamma}$ is generated by the *s*-channel diagram:

We look at the final state $H \rightarrow b\bar{b}$, so that the signal is two *b*-jets plus missing energy.

(4月) (日) (日)

 $e^+e^-
ightarrow H\bar{\gamma}$

Inclusive Production Cross Section

Event Selection

Initial event selection:

- Two *b*-jets with $p_T > 20$ GeV, $|\eta| < 2.5$, and $\Delta R(bb) > 0.4$

The main SM background is the $\nu \bar{\nu} b \bar{b}$ production, including the on shell $ZH \rightarrow \nu \bar{\nu} b \bar{b}$. There is also a subdominant contribution from $\nu \bar{\nu} q \bar{q}$, where both light jets are misstagged as *b*-jets. We assume 80% *b*-tagging efficiency and a miss-tag rate of 10^{-2} for light jets.

 $e^+e^- \rightarrow H\bar{\gamma}$

Jet Pair Invariant Mass Distribution

We require M_{jj} within 10% of the peak value of the simulated signal events. The distributions shown are normalized to one.

- ∢ ⊒ →

 $e^+e^- \rightarrow H\bar{\gamma}$

Missing Mass Distribution

< A

Introduction $^+e^- \rightarrow H\bar{\gamma}$

Missing Energy Distribution

Missing energy distributions after applying the cuts on M_{jj} and M_{miss} . We require 40 GeV $< \not \! E < 100$ GeV.

Signal and Backgrounds After Cuts

Process	Cross section (fb)	Acceptance (%)
$H\bar{\gamma}$ ($C_{Z\bar{\gamma}}=0$)	$10.1 imes10^{-3}~C_{\gammaar\gamma}^2$	17.3
$Har{\gamma}$ ($C_{\gammaar{\gamma}}=0$)	$4.8 imes10^{-3}$ $C_{Zar{\gamma}}^2$	17.3
$Har{\gamma}$ ($C_{Zar{\gamma}}=0.79~C_{\gammaar{\gamma}}$)	$13.8 imes10^{-3}~C_{\gammaar\gamma}^2$	17.3
SM vvbb	115.	0.08

The cross section and acceptance after the cuts for the signal and SM background. The $\nu \bar{\nu} q \bar{q}$ background is negligible.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $e^+e^-
ightarrow Har\gamma$

Discovery Reach

The projected sensitivity for the effective couplings for 10^4 fb^{-1} at a 240 GeV e^+e^- collider.

 $e^+e^-
ightarrow Har\gamma$

Discovery Reach

The projected 5σ -sensitivity for the effective couplings for a 240 GeV e^+e^- collider.

Matti Heikinheimo