Luminosity targets for FCC-ee

Outline

- Reminder: Expected luminosity as a function of \sqrt{s}
- A very rich physics programme!
 - The Z pole scan, $\sqrt{s} \sim m_Z = 88-95 \text{ GeV}$ ["90"]
 - The WW threshold scan, $\sqrt{s} \sim 2 \text{ m}_{\text{W}} \sim 160\text{-}170 \text{ GeV}$ ["160"]
 - The Higgs factory, $\sqrt{s} \sim m_H + m_Z + 25 \text{ GeV} \sim 220 240 \text{ GeV}$ ["240"]
 - The top threshold scan, $\sqrt{s} \sim 2 \, m_{top} \sim 340-370 \, \text{GeV}$ ["350"]
 - And also ...
 - ⇒ The Hee coupling and N_v , $\sqrt{s} \sim m_H \sim 125$ GeV
 - → The EM coupling constant $\alpha_{QED}(m_Z)$, $\sqrt{s} = m_Z \pm 3.5$ GeV
 - **→** The highest centre-of-mass energy, \sqrt{s} = ?
 - And maybe more?

Expected luminosity as a function of √s (1)

From F. Zimmermann's presentation in Washington

- ◆ Instantaneous luminosities / IP, expressed in 10³⁴ cm⁻²s⁻¹
 - B = Baseline, C = Crabbed-waist, 2/4 = number of IPs

√s (GeV)	B4	B2	C4	C2
90	21	27	215	277
160	10.4	13	38	38
240	5-3	7	8.7	11.0
350	1.5	1.9	2.1	2.6

- Note 1 : Luminosity increase at each IP for 2 IPs being challenged by Frank?
- Note 2: Need official "working numbers", kept up-to-date (e.g., on the FCC-ee site)

Expected luminosity as a function of √s (2)

- □ Total integrated luminosity / year (10⁷ seconds) in ab⁻¹
 - Summed over all IPs
 - B = Baseline, C = Crabbed-waist, 2/4 = number of IPs

√s (GeV)	B4	B2	C4	C2
90	8.4	5-4	86.o	55-4
160	4.16	2.6	15.2	7.6
240	2.12	1.4	3.48	2.20
350	0.60	0.38	0.84	0.52

■ Up to twice more lumi with 4 IPs than with 2 IPs

Increase of the running time by a factor 2 with 2 IPs for the same physics

Expected luminosity as a function of √s (3)

Number of events / year

Summed over all IPs

√s (GeV)	B4	B2	C4	C2	ILC programme	@FCC-ee
90 (Z)	3.6×10 ¹¹	2.3×10 ¹¹	3.7×10 ¹²	2.4×10 ¹²	10 ⁹ ?	1 day C4
160 (WW)	1.7×10 ⁷	1.0×10 ⁷	6.1×10 ⁷	3.0×10 ⁷	10 ⁵ ?	1 week C4
240 (HZ)	4.2×10 ⁵	2.8×10 ⁵	7.0×10 ⁵	4.4×10 ⁵	7×10 ⁴	1 month C4
350 (tt)	3.0×10 ⁵	1.9×10 ⁵	4.2×10 ⁵	2.6×10 ⁵	1.4×10 ⁵	4 months C4
350 (WW → H)	1.8×10 ⁴	1.2×10 ⁴	2.5×10 ⁴	1.5×10 ⁴	3.5×10 ⁴ @500 GeV	1.5 years C4

(2 years)

Do we need that much more luminosity at FCC-ee? For what physics?

The Z pole

Lineshape

- m_z and Γ_z measurements limited to ~50 keV by the E_{beam} measurement
 - 5×10¹⁰ Z suffice to reach this statistical precision
 - → A few weeks in the first C4 year with 20% of the RF power.
 - → Polarization is mandatory: implies learning precise tuning of the accelerator

Asymmetries

- A^{FB}_{μμ} limited to 5×10⁻⁶ by the E_{beam} measurement
 - 10¹² Z suffice to reach this statistical precision (= 3 B4 years with full RF power)
 - Can be done in the first C₄ year with 20% of the RF power.

Search for rare processes

Ex: RH neutrino search needs at least 10¹³ Z

⇒ 2.5 years of C4 with full RF needed

Or 4 years of C2

Or 25 years of B4

Or 40 years of B2

- Towards major discovery(ies)
 - or definitive exclusion in the 20-80 GeV range

The WW threshold

- W mass measurement @ threshold
 - σ_{WW} measurement limited to 2×10⁻⁴ (?) by luminosity measurement accuracy
 - Translates to an uncertainty of 300 keV on the W mass
 - ◆ About 5×10⁷ W at threshold suffice to reach this statistical precision.
 - Can be done in one C4 year with full RF power
 - → Or two C2 years
 - **→** Or three B4 years
 - → Or five B2 years

The Higgs factory (1)

Reminder: HL-LHC prospects for Higgs coupling ratios

CMS Projection

- As soon as a lepton collider is turned on, the HZZ coupling is "fixed" from $\sigma_{\rm HZ}$
 - Model-independent coupling precision vary from 2% (HWW) to 10% (Ηττ)
- Need a meaningful step after HL-LHC > improve by at least one order of magnitude

The Higgs factory (2)

- Reminder: TLEP prospects
 - ◆ At 240 GeV: 2 million HZ events; At 350 GeV: 70,000 WW -> H events
 - ~Same running time at 240 and 350 GeV
 - CMS detector simulation: conservative projections

	Mo	HL-	
Coupling	TLEP-240	TLEP	LHC
$g_{ m HZZ}$	0.16%	0.15% (0.18%)	_
$g_{ m HWW}$	0.85%	0.19% (0.23%)	2-4%
$g_{ m Hbb}$	0.88%	0.42 % (0.52%)	3-6%
$g_{ m Hcc}$	1.0%	0.71% (0.87%)	_
$g_{ m Hgg}$	1.1%	0.80% (0.98%)	2-5%
$g_{ m H au au}$	0.94%	0.54% (0.66%)	6-9%
$g_{{ m H}\mu\mu}$	6.4%	6.2 % (7.6%)	~10%
$g_{ m H\gamma\gamma}$	1.7%	1.5% (1.8%)	3-5%
BR _{inv}	0.1%	0.1%	10%

- ◆ About an order of magnitude improvement for FCC-ee over the "constrained" HL-LHC
 - 2 million HZ events and 70,000 WW -> H events are about the right amount

The Higgs factory (3)

- To get two million HZ events at 240 GeV, one needs
 - Three years in the C4 configuration
 - Or five years in the C2 configuration
 - Or five years in the B4 configuration (TLEP paper)
 - Or seven years in the B2 configuration
 - Complemented by five years in the B4 configuration at 350 GeV
 - Or eight years in the B2 configuration
 - Required to optimally measure the total Higgs width and the HWW coupling
 Which in turns fixes all couplings in a model-independent manner
 - NB: These measurements are not limited by experimental systematic uncertainties
 - The more luminosity the better
 - Provided that theory calculations match the experimental precision.

The top threshold

Scan the top threshold

With several energy points from 340 to 350 GeV

• A year in the B4 configuration is more than enough to reach a 15 MeV statistical accuracy on the top quark mass.

The top electroweak couplings

- Need to go above the top threshold
 - ◆ Typically 365-370 GeV is almost optimal for all practical purposes
 - FCC-ee projections for the ttZ couplings
 - With four (six) years at 365 GeV in the B4 (B2) configuration

◆ Large improvement wrt (HL)-LHC – Separation from composite Higgs models ~ ILC.

Beyond the core programme...

- Still under evaluation
 - ◆ The next four slides are very preliminary
 - The 4th is even very vague

The Hee coupling at $\sqrt{s} = 125 \text{ GeV}$

The Hee coupling through resonant production in the s channel

- With the use of mono-chromators ($\delta\sqrt{s} \sim 5$ MeV)
 - Provided that they do not reduce the luminosity (!)
 - Can set an upper limit on κ_e to ~2 × SM value with 10 ab⁻¹
- ◆ In the C4 configuration, about 40 ab⁻¹ are expected every year
 - Reach SM sensitivity within a year in the C4 configuration
 - **▶** Within 2 years in the C2 configuration
 - **→** Within 8 years in the B4 configuration
 - ➡ Within 12 years in the B2 configuration
 - Could benefit from more running

Measurement of Γ_Z^{inv} at \sqrt{s} = 125 GeV

- The run at 125 GeV is also optimal for the Z invisible width measurement
 - Or equivalently, the "number of neutrinos" N_v

$$N_{\nu} \sim \sigma(e^+e^- \rightarrow \nu \bar{\nu} \gamma) / 2\sigma(e^+e^- \rightarrow \mu^+\mu^- \gamma)$$

- About o.8 billion ννγ events expected per year at √s ~ 125 GeV (in the C4 config.)
 - Statistical precision on N_v ~ 0.0003

Factor 25 improvement over today's precision: 0.008

➤ Possible systematic uncertainty < 0.0001</p>

Could benefit from more running

Measurement of $\alpha_{QED}(m_Z)$

- Uncertainty dominant in the interpretation of precision measurements
 - ◆ Limits severely the potential for new physics exploration at the FCC-ee
 - Would require this uncertainty to be reduced by at least a factor 5
 - Use the FCC-ee to measure $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ and $A_{FB}^{\mu\mu}$
 - γ exchange proportional to $\alpha^2_{QED}(\sqrt{s})$
 - $\bullet~$ Z exchange independent of α_{QED}
 - γ Z interference proportional to $\alpha_{QED}(\sqrt{s})$

- The run at the Z pole is of course not well suited to this measurement!
 Just below or just above the Z pole ? One or several points?
- And then use theory to extrapolate from α_{QED}(√s) to α_{QED}(m_Z)
 Not affected by e⁺e⁻ resonances at small energies
 Theoretical error becomes negligible
- Challenge is that current uncertainty is ~ 10⁻⁴
 - To be reduced to 2×10⁻⁵ or better

$$\alpha_{QED}^{-1}(m_Z) = 128.952 \pm 0.014$$

Measurement of $\alpha_{QED}(m_z)$

- Combination of cross section ($\mu\mu$) and A_{FB} ($\mu\mu$ and $\tau\tau$), in a year (CW, 4IPs)

- ♦ Get to 2×10^{-5} at $\sqrt{s} \le 70$ GeV (cross section) and 88 / 95 GeV (forward-backward asym.)
 - Absolute cross section measurement more difficult + exotic √s : priority is to A_{FB}

The highest centre-of-mass energy?

- □ It is important to determine the ultimate √s reachable at the FCC-ee
 - Definition of "ultimate √s"
 - Manageable beam lifetime (> 10 s)
 - Manageable RF length
 - Integrated luminosity comparable to that of ILC at the same \sqrt{s}
 - ⇒ Frank had inferred two years ago that $\sqrt{s_{\text{ult.}}}$ ~ 500 GeV for four IPs
 - If time and money allow, it might be useful to spend few years (typically three) there
 - Physics case still unclear to be studied.

Summary: the FCC-ee physics programme (1)

Time needed (in years) at each centre-of-mass energy with full RF power

	√s	C ₄	C ₂	B4	B ₂	
	VS	<u> </u>	CZ	54	52	
$N_Z = 10^{(12)13}$	90	(<1) 2.5	(<1) 4	(2.5) 25	(4) 40	
	160	1	2	3	5	
	240	3	5	5	7	
	340-370	4	6	5	7	
	Beyond the core programme, under study					
	88 / 95 (α_{QED})	1	1.5	10	15	
	125	1	1.5	8	12	
	Highest?	3?	5?	3?	5?	
	Commissioning	2	2	2	2	
	TOTAL	(9) 10.5 (17.5)	(14) 17 (27)	(15.5) 38 (61?)	(24) 59 (93?)	

• Only B4 an B2 configurations are used at and above 350 GeV

Summary: the FCC-ee physics programme (2)

- The baseline design with 4 IPs allows a powerful baseline programme
 - With all relevant precision measurements in about 15 years
 - ... and already 10¹² Z decays!
- The crabbed-waist scheme reduces the needed time to ~10 years (4 IP)
 - AND, most of all, renders possible exciting / crucial aspects of the physics programme
 - High-luminosity run (+ 1-2 years) at the Z peak, up to 1013 Z decays
 - ➤ Look for rare processes, maybe the shortest way to discovery?
 - ullet One year devoted to the measurement of $lpha_{ exttt{QED}}$
 - → Just below/above the Z peak, crucial for new physics interpretation
 - And, perhaps, the possibility to measure the Hee coupling at \sqrt{s} = 125 GeV
- The option with only 2 IPs has an impact on the time needed
 - Typically increased by 50% for the same physics outcome
 - We ought to leave open the possibility of 4 IPs
- Forthcoming work will refine the present estimates
 - E.g., what relevance for higher energies?