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Abstract

We consider diverse examples of science goals that provide a framework to assess luminosity
goals for a future 100-TeV proton-proton collider.
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- what are the physics drivers of the luminosity goals ?
- how ambitious should the luminosity goals be ?
- is there a minimum acceptable luminosity ?



Useful tool to explore luminosity/energy dependence of discovery reach:

®00 G.Salam and A.Weiler,

[ a4 | P ] [E."] [ + | €% collider-reach.web.cern.ch/ http://cern.ch/colIider-reach
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Recent papers addressing the luminosity issue
Mass Reach Scaling for Future Hadron Colliders, T.Rizzo, http://arxiv.org/abs/1501.05583
High Energy Colliding Beams;What Is Their Future? B. Richter, http://arxiv.org/abs/1409.1196

“.... restricting the luminosity to what will be achieved at HL-LHC gives the new machine a limited
vision, and will (and should) seriously lower the likelihood that it will be funded.

.. question is: what does it mean to “restrict the luminosity that will be achieved”?
Should L necessarily scale like Epeam?
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Physics considerations on luminosity goals

Ultimate Luminosity must guarantee:

® Extension of the discovery reach at the high mass end

® Extension of the discovery reach for rare processes
at masses well below the kinematical edge

® High statistics for studies of new particles to be
discovered at the LHC

® High statistics for Higgs studies

Initial Luminosity should allow to rapidly (~Ist year) surpass
the exploration potential of the LHC
4



o(M,g) ]\g4_22 L(x = M/VS)

At fixed mass, cross sections grow when S grows, since

1 1 .
L(z) ~ — log(=), a<l1 assuming

T x f(x)~1/x'*

To scale the discovery reach in mass as the growth in
energy, means however to keep x=M/+/S constant.Then

9> L(x)

M
o ,9)0<S "

Thus the cross-sections for searches go like |/S, and the
machine luminosity may need to grow accordingly.



Extension of the discovery reach at high mass

Example: discovery reach of W? with SM-like couplings
NB For SM-like Z’, Gz BRiept ~ 0.1 x Gw BRiep , = rescale lum by ~ 10
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At L=O(ab™!), Lumx [0 = ~M + 7TeV
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Lum x 10 = relative gain much larger at low mass than at high mass



* One could argue that the 10 x increase in lum is not justified if the increase in
sensitivity is below a level of O(20%) (unless there is a concrete physics case, e.g.
testing a possible recurrent spectrum of resonances)

See e.g. the history of Tevatron achievements: after |fb=!, limited progress at the high-
mass end, but plenty of results at “low” mass (W, top and b physics, Higgs sensitivity, ....

\/

Example from HL-LHC studies: Z’ = e*e-

ATLAS/CMS HL docs | 300/fb | 3000/fb

95% excl (ATLAS) |6.5 TeV| 7.8TeV

50 (CMS) 5.1 TeV |6.2 TeV

e AMIM ~ 20% = the LHC reaches the threshold of saturation of the mass reach already at

300fb~! . Notice that 95% exclusion at 300 makes unlikely the 50 discovery at 3000. In fact
the main justification for the HL-LHC is the higher-statistics study of the Higgs, not the
extension of the mass reach

e In this case, the scaling Loc Epeam?® gives L(100) ~ I 5ab™!



Luminosity vs CM Energy
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e At around 40 TeV,a 20% increase in energy buys a factor of 5 in rate. 30% in energy
buys a factor 10 in rate.
* What will be less challenging ? To upgrade the magnets, or to increase Lx |0 ?



Extension of the discovery reach at low mass

* The extension power of higher lum can be important at lower masses, e.g. for
processes with very suppressed rates, or difficult to separate from the bg.

* In this case, though, one might benefit more from improved detection
efficiency than from pure luminosity.

¢ The luminosity discussion is extremely process dependent
(bg’s, detector performance, pileup issues, etc)



Example: direct stop production
from Mike Hance’s talk

pp — i* — 1x3tx) —Beyond 3ab~! [BEHEVEEE

@ Scale ES cuts for higher masses, going from 0.3 ab=! to 30 ab™!
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Recognizing that higher luminosity is mostly needed to better explore
“low” masses, rather than the highest masses, may lead to different
perspective on the design of detectors .




Higher statistics for studies of particles
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At the edge of the HL-LHC discovery reach, namely
mx ~ 6.5 TeV :

104 for g-gbar— X

o(100TeV) / o(14 TeV) ~
10° for gg— X

= improve by orders of magnitude the precision of the measurements

of particle X discovered at the mass-end of the LHC reach
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At the edge of the HL-LHC discovery reach, namely
mx ~ 6.5 TeV :

104 for g-gbar— X

o(100TeV) / o(14 TeV) ~
10° for gg— X

= improve by orders of magnitude the precision of the measurements

of particle X discovered at the mass-end of the LHC reach

At lower masses the increase is less pronounced.
mx ~ | TeV:
~ 25 for g-gbar— X

o(100TeV) / (14 TeV) ~
~10? for gg— X

Once again, it’s the “low”-mass physics that benefits the most from
luminosity



Higher statistics for Higgs studies

R(E) = 0(E TeV)/o(14 TeV)

NLO rates

o(14 TeV) R(33) R(40) R(60) R(80) R(100)
ggH 50.4 pb 3.5 4.6 7.8 11.2 14.7
VBF 4.40 pb 3.8 5.2 9.3 13.6 18.6
WH 1.63 pb 2.9 3.6 5.7 7.7 9.7
ZH 0.90 pb 3.3 4.2 6.8 9.6 12.5
ttH 0.62 pb 7.3 11 24 41 61
HH 33.8 fb 6.1 8.8 18 29 42

Gains in the range 10-50, however ....
=> needs detailed studies, considering also the prospects to study rare
decays, selfcouplings,etc.etc.



Example: H selfcoupling at 100 TeV

W.Yao, update of http://arxiv.org/abs/1308.6302,
shown at “IAS programme on The Future of High Energy Physics”, Hong Kong, January 2015
http://ias.ust.hk/program/shared _doc/201501fhep/Weiming%20Yao Jan%2021.pdf

Updating HH—Dbbyy at Tev100

« Using Delphes 3.1.14 and the results depends on detector performace assumed.
« Including jjyy, bbjy, tty, ttyy with ATLAS fy=0.0093e(-Et/27.5) for HL-LHC

« Tighten myy window from 10 GeV used for snowmass to 6 GeV.
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*H coupling dAVA=15% with do/dA=-0.51
*ArXiv:1412.7154 reported 40% using ATLAS photon ID eff.

Expecied Signal Ewanis
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*Also start to probe Higgs coupling in VBF, ttHH channels. 3



Initial luminosity, or:
what’s the minimum lum to
take us beyond the HL-LHC?



Example: dijet production at large mass
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Example: dijet production at large mass
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M_ . (TeV)

min

| pb~! to recover sensitivity of HL-LHC =< | day @ 10

e 50pb~! to 2x the sensitivity of HL-LHC =< | month @ 10°?

o |fb~! to 3x the sensitivity of HL-LHC =< | year @ 2x10°?



For resonances: at the edge of the HL-LHC discovery
reach, namely mx ~ 6.5 TeV :

10* for g-gbar— X
o(100TeV) / o(14TeV) ~
10° for gg—X

This means:

o |[f X is discovered at the HL-LHC, it can be confirmed at 100 TeV
with 10-(4*3) of the HL-LHC luminosity, i.e. O(30-300 pb~')

e => L < 5x10%" in the Ist year

e A luminosity of O(0.1 — | fb~') allows the discovery of particles
just beyond the HL-LHC reach

e =>| < 2x 103%in the Ist year
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desirable.

® For a large class of new-physics scenarios that may arise from the LHC, less
aggressive luminosity goals are acceptable as a compromise between physics return
and technical or experimental challenges. In particular, even luminosities in the
range of 10%? are enough to greatly extend the discovery reach of the 100 TeV
collider over that of the HL-LHC, or to enhance the precision in the measurement
of discoveries made at the HL-LHC



