Higgs + Dark Photon @ FCC-ee

Emidio Gabrielli

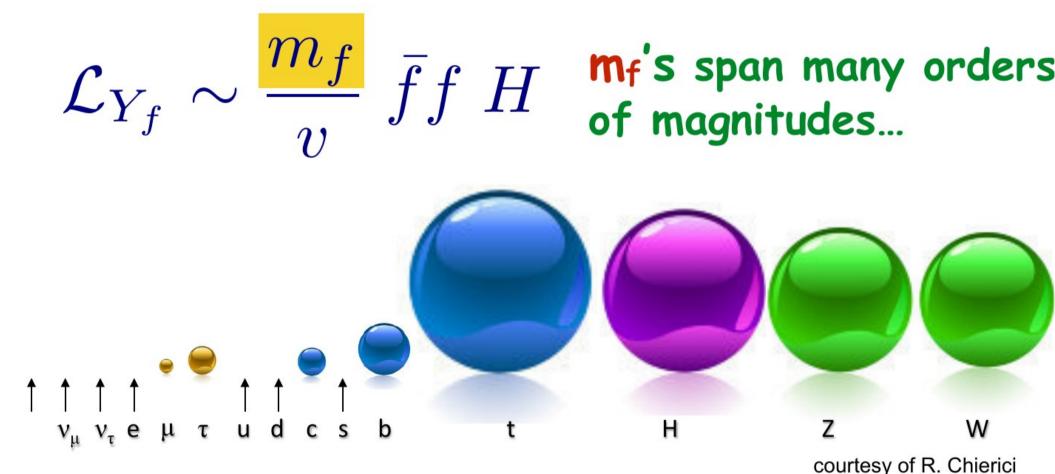
University and INFN Trieste, Italy NICPB, Tallinn, Estonia

In collaboration with: S. Biswas, M. Heikinheimo, B. Mele, M. Raidal

 based on:
 JHEP 1506 (2015) 102
 Biswas, EG, Heikinheimo, Mele

 PRD 90 (2014) 055032
 EG, Heikinheimo, Mele, Raidal

 PRD 89 (2014) 015008
 EG, Raidal


Emidio GabrielliFCC-ee (TLEP) Joint Accelerator-Physics,CERN29/06/2015

Dark sector origin of Dark Matter

- Dark Matter origin is unknown, not explained by SM
- Possible origin in a Hidden Sector (HS), neutral under SM gauge interactions
- HS can have weakly effective coupling with SM particles , if there exist messenger fields HS ↔ SM
- HS could contain light or massless gauge bosons (Dark Photons) mediating long-range forces in the HS
- Massive (light) Dark Photons mainly introduced ad hoc to improve astroparticle and cosmological models

Arkani-Hamed, Finkbeiner, Slatyer, Weiner, PRD 79 (2009)Fan, Katz, Randall, Reece, PRL 110 (2013)Emidio GabrielliFCC-ee (TLEP) Joint Accelerator-Physics,CERN29/06/20152

Mystery in Hierarchy of SM Yukawa's

recent proposal aiming to naturally solve the Flavor hierarchy problem (predicting DM candidates and Dark Photons)

Emidio Gabrielli

FCC-ee (TLEP) Joint Accelerator-Physics, CERN

RN 29/06/2015

A natural solution to the Flavor Hierarchy

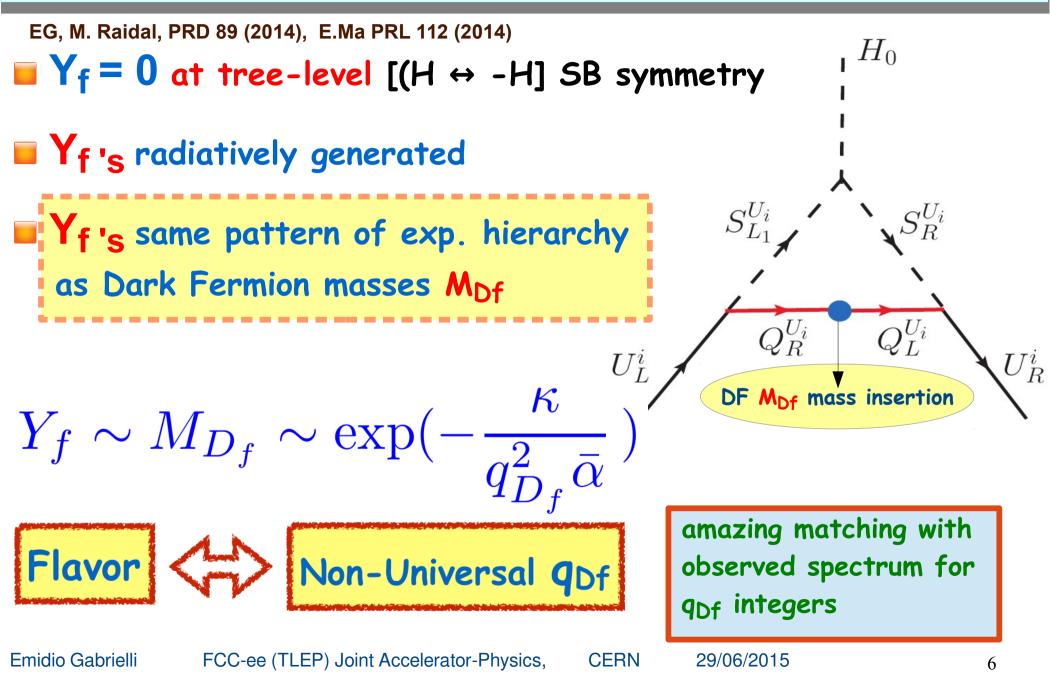
Require Hidden Sector + Dark unbroken U(1)_F

EG, M. Raidal, PRD 89 (2014)

- HS containing N_f Dark Fermions (Dark Matter candidates) charged under an unbroken U(1)_F (massless Dark Photon)
- ChSB in HS via non-perturbative effects (via high derivative in DP field $\sim 1/\Lambda \rightarrow$ Lee-Wick ghosts)

Dark Fermions get mass M_{Df} depending on their U(1)_F charge q_{Df}

Flavor and Chiral Symmetry Breaking in $HS \rightarrow$ transferred at one-loop to visible-sector Yukawa couplings via squarks/slepton-like scalar messengers ! heavy scalar messengers S_{L,R} heavy due to vacuum stability bounds heavy scalar messengers HS SL,R,...▼ (squark/slepton-like) Colored messenger heavy connecting SM states > 55 TeV with HS states EW ones could be lighter


Flavor broken only
by q _{DF} charges →
Flavor universality of
messenger masses

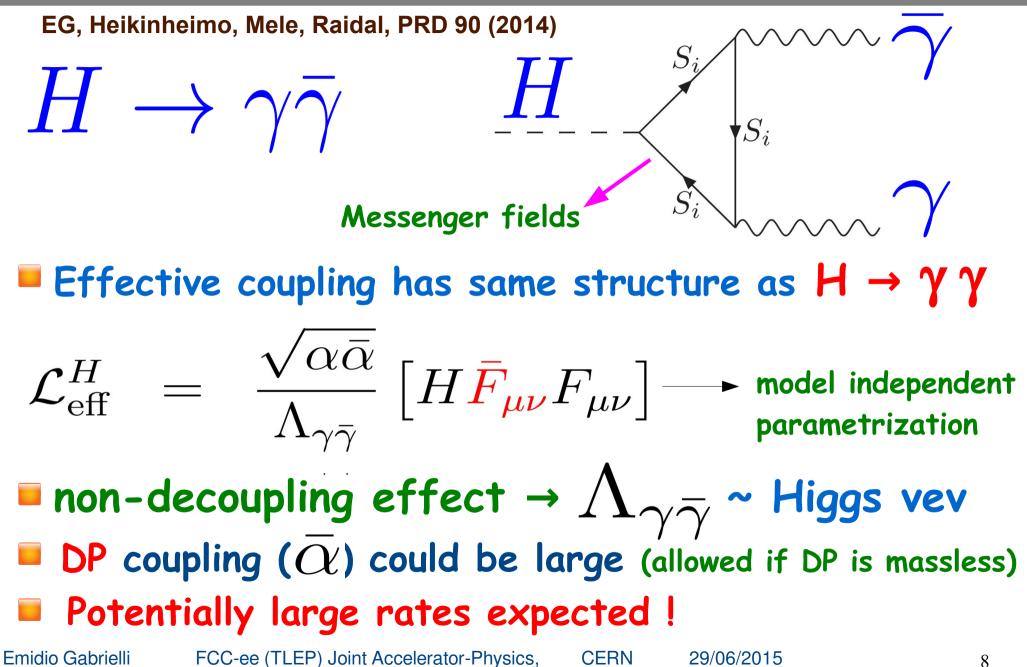
Massanaans		\mathcal{O}_L	U	1/2	1/3	Э	- q_{D_i}	
Messengers		$\hat{S}_{L}^{U_{i}}$	0	1/2	1/3	3	- q_{U_i}	by q _{DF} char
(Scalars)		$S_R^{D_i}$	0	0	-2/3	3	$-q_{D_i}$	• •
		$S_R^{U_i}$	0	0	4/3	3	- q_{U_i}	Flavor unive
Douk Conton		Q^{D_i}	1/2	0	0	0	q_{D_i}	messenger
Dark Sector		Q^{U_i}	1/2	0	0	0	$q_{U_{m{i}}}$	
(Fermions+Scalar)		S_0	0	0	0	0	0	Courtesy of B. Mele
Barbara Mele Emidio Gabrielli	FC		no, 12 Febru	oint Accel	erator-Pl	nysics,		

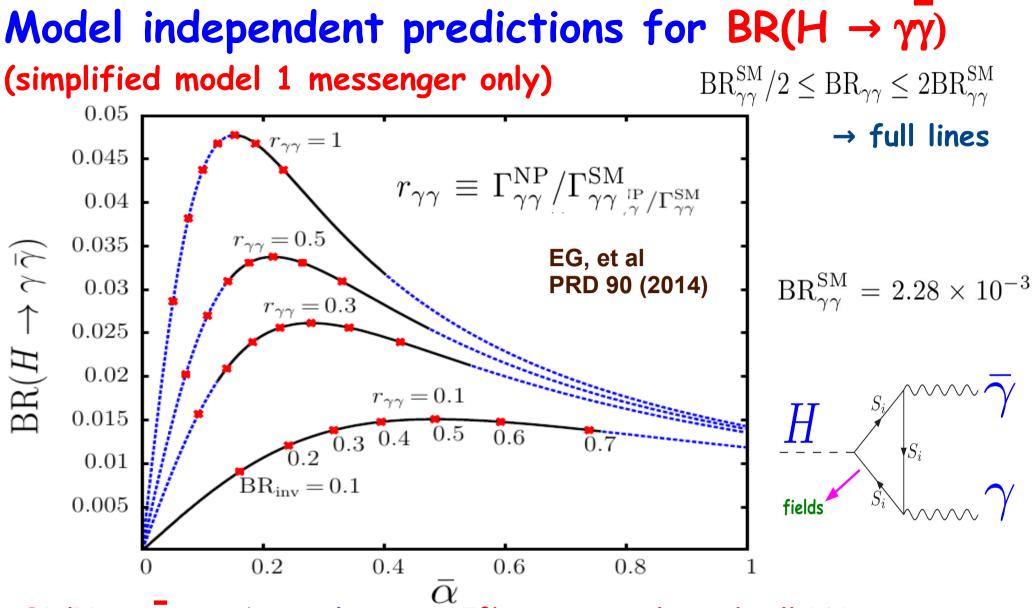
Fields Spin $SU(2)_L U(1)_Y SU(3)_c U(1)_F$

 $0 \quad 1/9 \quad 1/9$

Radiative Yukawa coupl.s follow M_{Df} hierarachy

Dark Fermions are the lightest massive dark particles all stable [due to conserved U(1)_F charge] potentially multi-DM candidates


DF spectrum almost rescaled from SM-fermion spectrum [Dark Fermions associated to light SM fermions could be potentially very light]


rich phenomenology at colliders [exploration just started]

in the meantime:

one straightforward new signature in Higgs decays involving Dark Photon couplings to Higgs boson...

Monophoton Exotic Higgs Signature

BR(H $\rightarrow \gamma \overline{\gamma}$) can be as large as 5% consistently with all LHC constraints

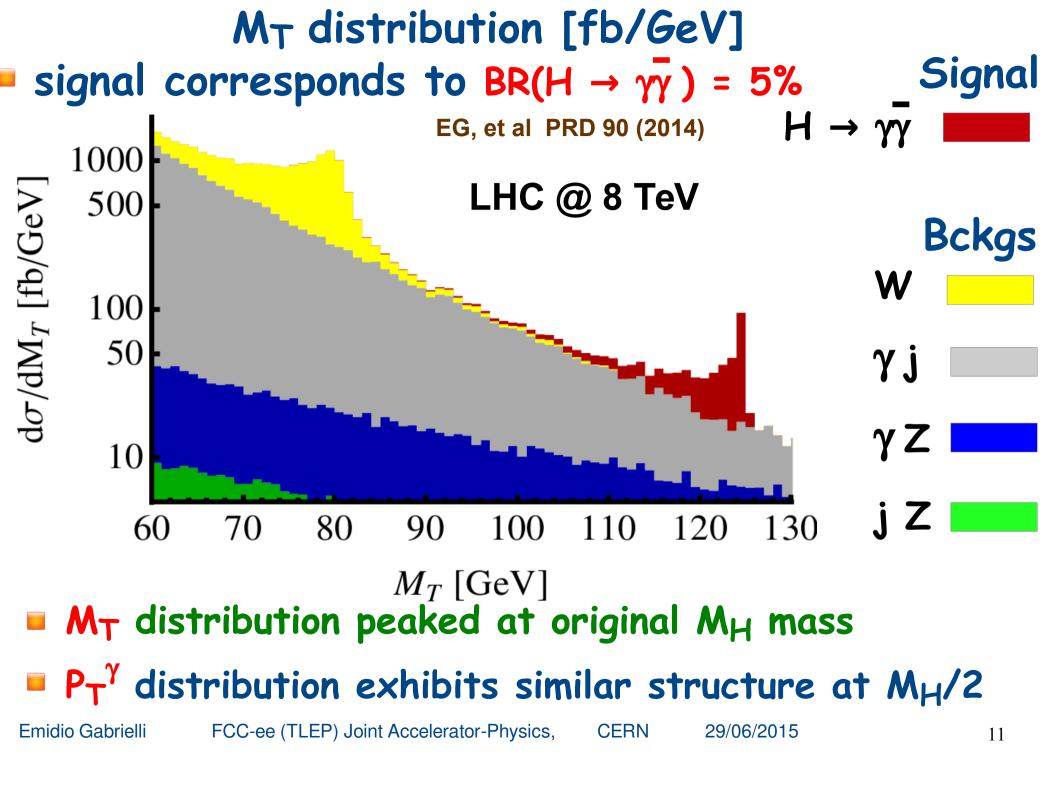
Flavor scenario naturally predicts large BRs

Emidio Gabrielli

FCC-ee (TLEP) Joint Accelerator-Physics, C

CERN 29/06/2015

Model independent analysis of $H \rightarrow \gamma \overline{\gamma}$ at LHC


The process $pp \rightarrow H \rightarrow \gamma \overline{\gamma}$ gives rise to the signal

$$pp \to \gamma + E_T$$

where $E_{\gamma} = m_H/2$ in the Higgs rest frame In the Lab frame one can define the variable M_{T} as the transverse invariant mass of the $\gamma + \not\!\!\!E_T$ system

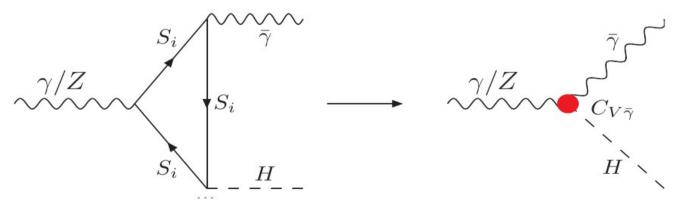
$$M_T = \sqrt{2p_T^{\gamma} \not\!\!\!E_T (1 - \cos \Delta \phi)}$$

where $\Delta \phi$ is the azimuthal distance between the P_T^{γ} photon momentum and the missing transverse momentum \not{E}_T

- One isolated photon with 50 GeV $< p_T^\gamma < 63$ GeV and $|\eta^\gamma| < 1.44.$
- Missing transverse momentum with $\not\!\!\!E_T > 50 \text{ GeV}$
- Transverse mass in 100 GeV $< M_T < 126$ GeV.
- No isolated jets or leptons.

Cross section X acceptance [fb] LHC @ 8 TeV

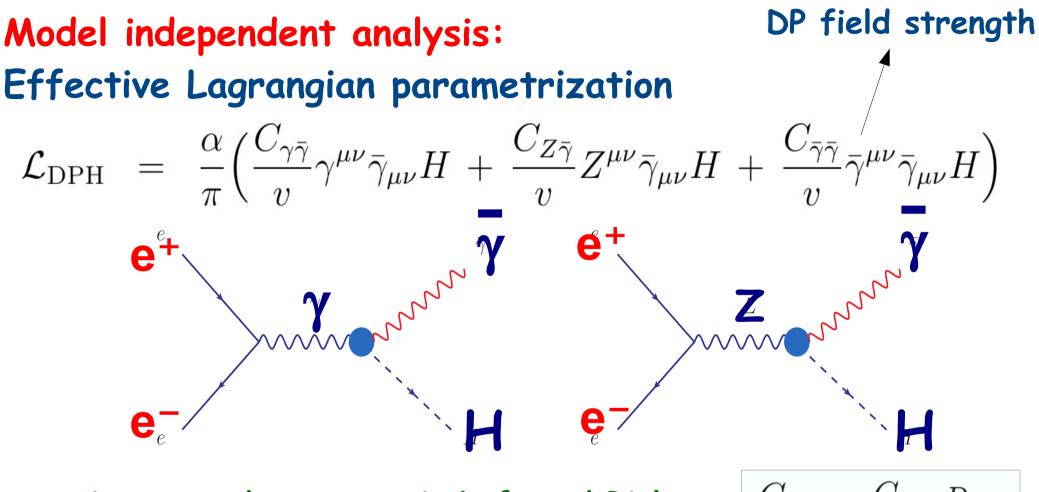
Bckgs	EG, et al PRD 90 (2014)	$\sigma \times A_1$	$\sigma \times A_2$
•	Signal $BR_{H\to\gamma\bar{\gamma}} = 1\%$	65	34
W	γj	715	65
	$\gamma Z o \gamma u ar{ u}$	157	27
γj	$jZ ightarrow j u ar{ u}$	63	11
	$W \to e \nu$	22	0
γΖ	Total background	957	103
•	$S/\sqrt{S+B} \ (\mathrm{BR}_{H\to\gamma\bar{\gamma}}=1\%)$	9.1	13.0
j Z 📃	$S/\sqrt{S+B} \ (\mathrm{BR}_{H\to\gamma\bar{\gamma}}=0.5\%)$	4.6	6.9


acceptance include previous cuts and: $A_1: 50 \text{ GeV} < p_T^{\gamma} < 63 \text{ GeV}$ $A_2: 60 \text{ GeV} < p_T^{\gamma} < 63 \text{ GeV}$ \blacksquare significance $S/\sqrt{S+B}$ corresponds to L=20 fb⁻¹ \blacksquare 5 x sigma sensitivity on BR(H $\rightarrow \gamma \gamma) \sim 0.5$ % with LHC data @ 8 TeV. Upgraded analysis at 13 TeV in progress Emidio Gabrielli FCC-ee (TLEP) Joint Accelerator-Physics, CERN 29/06/2015 13

Implications of $H\gamma\gamma$ and $Hz\gamma$ at e+e- colliders

Higgs production in association to a Dark Photon @ e+e-

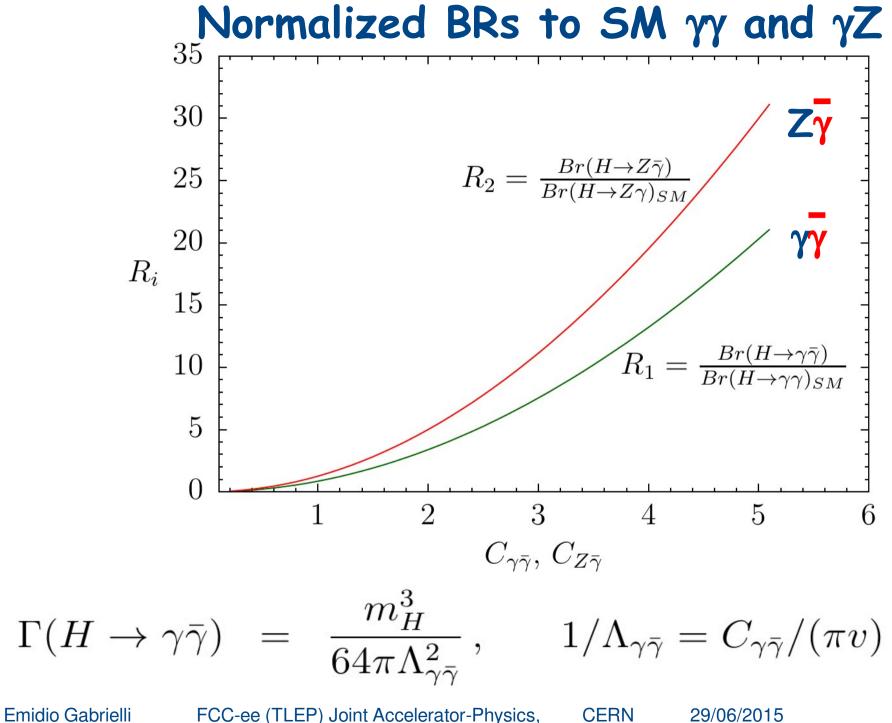
$$e^+e^-
ightarrow H \bar{\gamma}
ightarrow b ar{b} ar{\gamma}$$
 Biswas, EG, Heikeinheimo, Mele JHEP 1506 (2015) 102


■we look at Higgs decay in H → b b (best channel in e+e- colliders)
■dark photon undetected: signature consists of bb + missing energy

Effective field theory approach adopted (valid for heavy messengers)

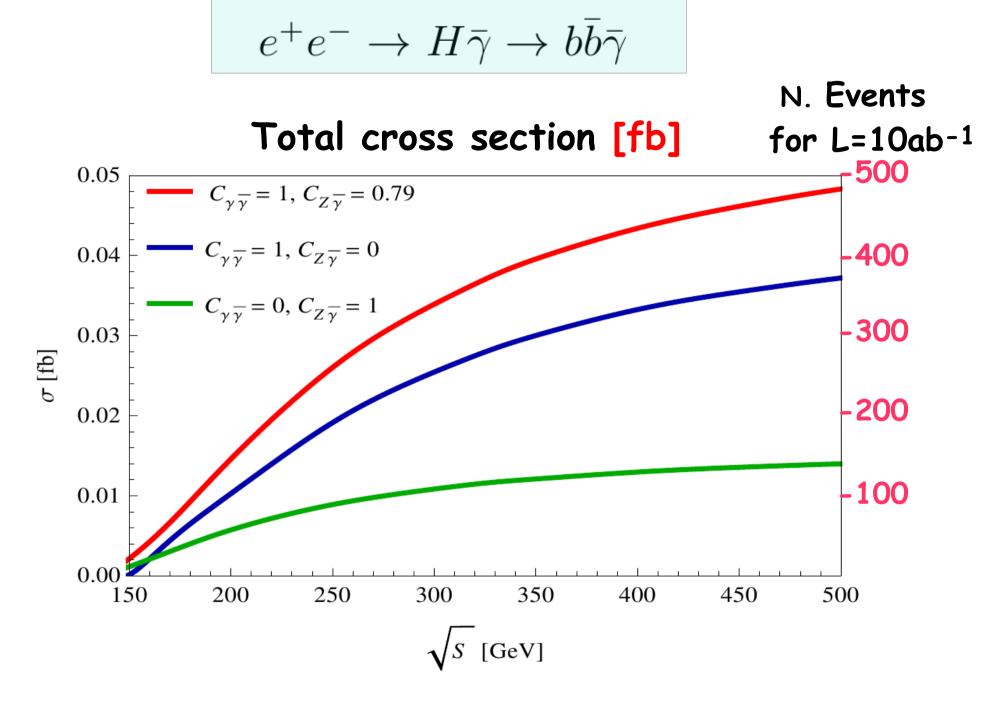
Model independent analysis

 $e^+e^- \to H\bar{\gamma} \to bb\bar{\gamma}$



assuming mass degeneracy in Left and Right $\rightarrow C_{Z\bar{\gamma}} = C_{\gamma\bar{\gamma}} R_{Z\gamma}$ messengers net result from a squark doublet $\rightarrow R_{Z\gamma}^{\tilde{q}} = \frac{R_{Z\gamma}^{\tilde{u}} + R_{Z\gamma}^{\tilde{d}}}{2} \approx 0.79$

Emidio Gabrielli FCC-ee (TLEP) Joint Accelerator-Physics,


29/06/2015

CERN

29/06/2015 CERN

16

Emidio Gabrielli

FCC-ee (TLEP) Joint Accelerator-Physics, CERN

17

29/06/2015

S/B analysis for e+e- \rightarrow H γ $\sqrt{s} = 240 \text{ GeV}$

signal bb + E → Missing energy
 simulated signal with MADGRAPH using effective Lagrangian, then passed to PYTHIA for parton shower and initial state radiation

Basic cuts
$$\begin{cases}
p_T^b > 20 \text{ GeV}, & |\eta_b| < 2.5 \\
\Delta R(bb) > 0.4, & \not E > 40 \text{ GeV}, \\
\Delta R(bb) = \sqrt{\Delta \eta^2 + \Delta \phi^2}
\end{cases}$$

after showering and hadronization we reconstruct jets and b-jets according to the PYTHIA jet-cone algorithm assuming R_j = 1.5 (optimizes mass reconstruction) Emidio Gabrielli FCC-ee (TLEP) Joint Accelerator-Physics, CERN 29/06/2015 18

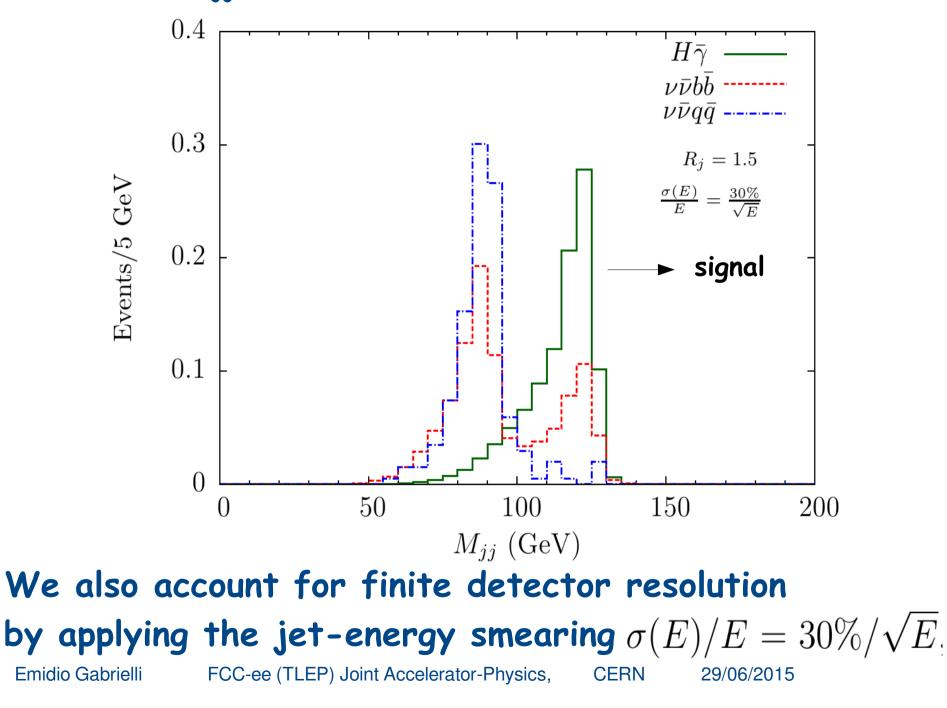
Main backgrounds for $b\bar{b}+E$

Irreducible

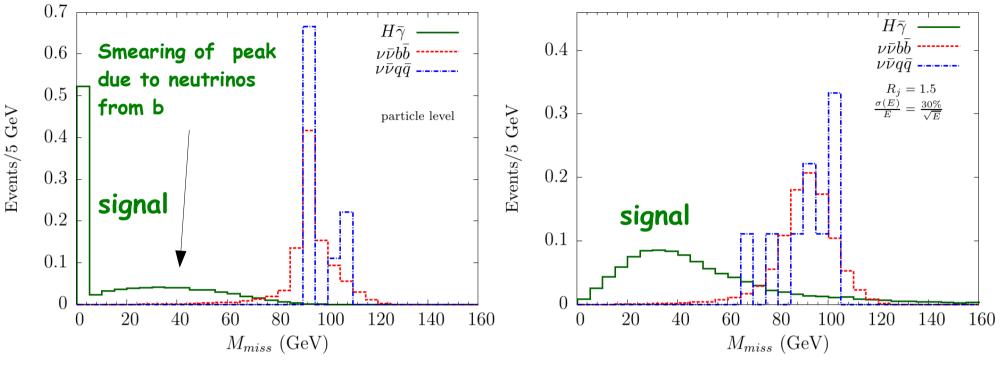
 $\nu \bar{\nu} b \bar{b} \qquad ZZ \rightarrow \nu \bar{\nu} b \bar{b}$ $ZH \rightarrow \nu \bar{\nu} b \bar{b}$ $WW \text{ fusion } \rightarrow H \nu \bar{\nu}.$

Reducible

 $\nu \bar{\nu} q \bar{q}$. Mostly from on-shell Z pairs where two light jets are misidentified with two b-jets


we assume: b-tagging efficiency of 80% fake b-jet rejection factor 1/100

Two kinematical variables particularly efficient for separating signal from bckg


M_{jj} = invariant mass of the two jets with higher transverse momentum P_T (after showering) (directly connected to b-pair invariant mass)

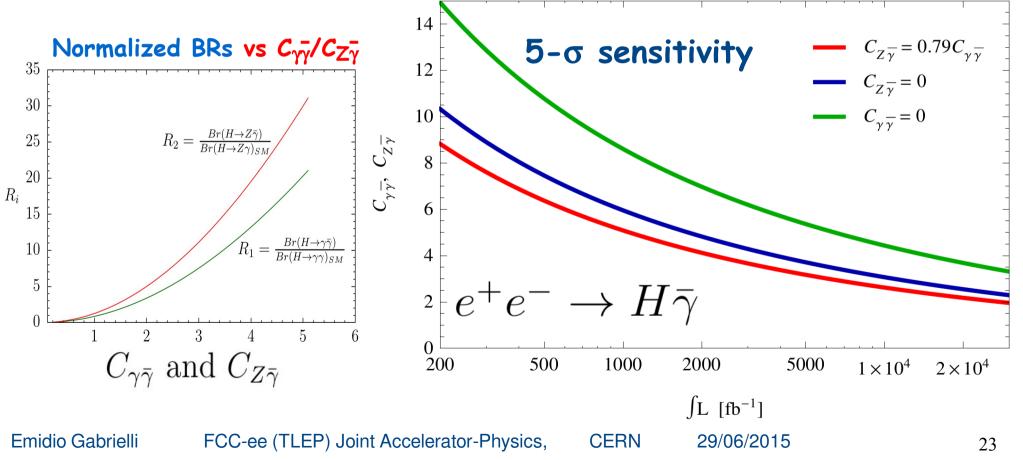
 M_{miss} expected to approximatively vanish in the partonic description of e+e- \rightarrow H γ

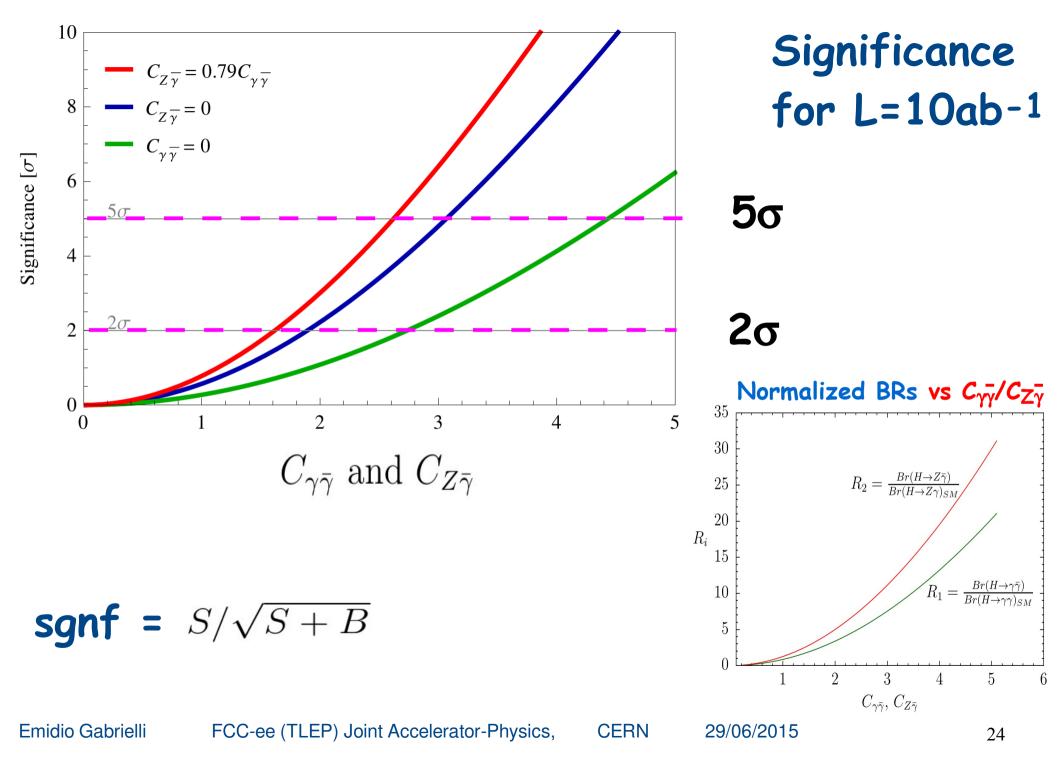
M_{jj} distributions (all normalized to 1)

M_{miss} distributions (all normalized to 1)

parton level

after PYTHIA


Parton showering, jet reconstr., energy-resol. degrades M_{miss} spectrum of signal shifting the peak and smearing it


■ suggests M_{jj} to be within 10% of peak value and M_{miss} < 40 GeV → 40 GeV < \not{E} < 100 GeV. Emidio Gabrielli FCC-ee (TLEP) Joint Accelerator-Physics, CERN 29/06/2015

Results for $\sqrt{s} = 240 \text{ GeV}$

Process		Acceptance after cuts (%)
$H\bar{\gamma} (C_{Z\bar{\gamma}}=0)$	$10.1 \times 10^{-3} C_{\gamma \bar{\gamma}}^2$	17.3
$H\bar{\gamma} (C_{\gamma\bar{\gamma}} = 0)$	$4.8 \times 10^{-3} C_{Z\bar{\gamma}}^2$	17.3
$H\bar{\gamma} (C_{Z\bar{\gamma}} = 0.79 \ C_{\gamma\bar{\gamma}})$	$13.8 \times 10^{-3} C_{\gamma \bar{\gamma}}^2$	17.3
SM $\nu \bar{\nu} b \bar{b}$	115.	0.08

signal acceptance insensitive to relative contribution of $C_{\gamma\bar{\gamma}}$ and $C_{Z\bar{\gamma}}$

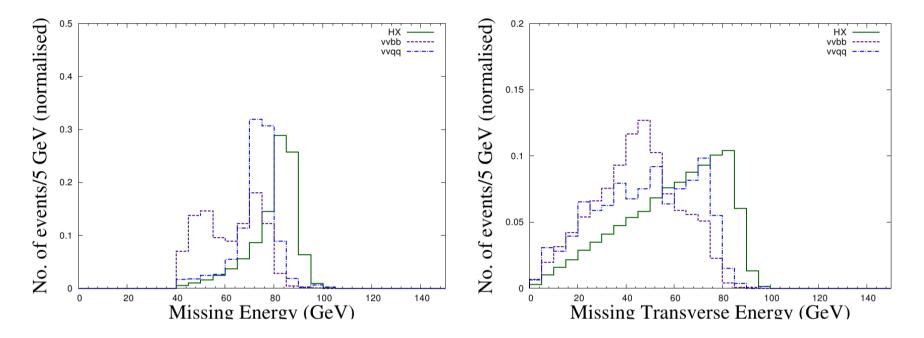
Outlook

- Hidden sector might have long distance interactions mediated by U(1)_F gauge \rightarrow Dark Photon predicted
- Higgs boson can be the SM portal to Dark Photons
- New effective vertices can appear: HZY and HYY
- Rich phenomen. implications @ LHC expected
 - \rightarrow search for $H \rightarrow \gamma \gamma$, and $H \rightarrow Z \gamma$
 - → potentially large rates due to non-decouplings
 - \rightarrow new production mechanisms pp \rightarrow H(\rightarrow bb) + γ

■ e+e- collider implications: (beyond Higgs decays in e+e- → HZ, with H → $\gamma \gamma$ and H → Z γ)

- e+e- → H(→bb) + $\overline{\gamma}$ allows good sensitivity on HZ $\overline{\gamma}$ and H $\gamma\gamma$ effective couplings
- Yet to work out how much e+e- can extend LHC potential in the discovery of Dark Photon searches

Backup slides


Backgrounds for pp \rightarrow H $\rightarrow \gamma \overline{\gamma}$

- 1. $pp \to \gamma j$, where large apparent $\not{\!\!\!\!\! E}_T$ is created by a combination of real $\not{\!\!\!\!\!\!\!\!\!\!\!\!\!\! E}_T$ from neutrinos in heavy quark decays and mismeasured jet energy.
- 2. $pp \rightarrow \gamma Z \rightarrow \gamma \nu \bar{\nu}$ (irreducible background);
- 3. $pp \rightarrow jZ \rightarrow j\nu\bar{\nu}$, where the jet is misidentified as a photon;
- 4. $pp \rightarrow W \rightarrow e\nu$, where the electron (positron) is misidentified as a photon;
- 5. $pp \rightarrow \gamma W \rightarrow \gamma \ell \nu$, where the lepton is missed;
- 6. $pp \rightarrow \gamma \gamma$, where one of the photons is missed.

Background analysis for pp \rightarrow H $\rightarrow \gamma \overline{\gamma}$

- $pp \rightarrow \gamma j$ is expected to be the dominant background → difficult to estimate without detailed information about the detector performance
- we evaluated the bckg $pp \rightarrow \gamma j$ by simulating events with one photon and one jet, treating jets with $|\eta| > 4.0$ as missing energy C.Peterson, A.Romagnoni, R.Torre, JHEP 1210, 016 (2010)
- the other backgrounds are estimated through parton level simulation, with a probability 10⁻³ and 1/200 to misidentify jet and an electron respectively, as a photon

 $e^+e^- \to H\bar{\gamma} \to bb\bar{\gamma}$

A comparison of the missing energy $(\not\!\!\!E)$ and the missing transverse energy $(\not\!\!\!E_T)$ distributions for the signal (green) and the backgrounds $\nu \bar{\nu} b \bar{b}$ (blue) and $\nu \bar{\nu} q \bar{q}$ (indigo), where the $\not\!\!\!E$ (and $\not\!\!\!E_T$) have been reconstructed using visible particles after PYTHIA showering, hadronization and jet energy resolution effect. For illustration purposes, all cross sections are normalized to one.