link

Mogens Dam
Niels Bohr Institute

1st FCC-ee mini-workshop on Detector Requirements

chaired by Christos Leonidopoulos (University of Edinburgh (GB)), Mogens Dam (University of Copenhagen (DK)), Gigi Rolandi (CERN)

from Wednesday, 17 June 2015 at 13:00 to Thursday, 18 June 2015 at 13:30 (Europe/Zurich)

The goal of this mini-workshop is to make progress with possible FCC-ee detector designs. Emphasis will be given on the implementation of detector geometries, impact of designs on physics reach, evaluation of background rates, development of software tools.

Four sessions:

- 1. Detector designs in software (4 talks)
- 2. Lessons from other experiments (5 talks)
- 3. Machine Detector Interface (4 talks)
- 4. FCC software (2 talks)

Total of

- 15 talks
- 34 registered participants

In summary, a very successful first Detector Requirements workshop

Session: Detector Design in software

Presentations based on ILC/CLIC detector designs

- All designs centered on the exploitation of particle flow algorithms
- Very high resolution, highly granular calorimeters
- Extremely good momentum resolution (2x10⁻⁵) trackers:
 - ILC: all silicon (SiD) or silicon + TPC (ILD)
 - new CLIC detector: TPC -> Silicon only (6 lays)
 [backgrounds considerations]
- Power consumption/cooling needs reduced through power pulsing

Thoughts for FCC-ee:

- Is TPC possible?
 - CLIC has background problems (@ 3 TeV)
 integrating over train of 312 BXs. At FCC-ee
 (Z), TPC will be integrating over ~10,000 BXs.
- Power consumption/cooling
 - Interesting work using CO₂ cooling (calos)

Imad Laktineh

Institut de Physique Nucléaire de Lyon, France

Technical issues related to power consumption and consequently heating and cooling problems are being addressed. Demonstrators are to be built soon.

Collaboration on e⁺ e⁻ is always welcome.

ILD - design goals and PFA

^{iLC}SOft∞

ILD optimized for

- precision tracking (ZH->X l+l-)
- precision vertexing (b, c tagging)
- very high jet energy resolution
- -> high granular calorimeters and Particle Flow Algorithm:

PFA

- reconstruct all single particles
- use tracker for charged particles
- use Ecal for photons
- use Hcal for neutral hadrons

 $\epsilon_{trk} = \delta(1/p) \approx 5 \cdot 10^{-5}, \ \epsilon_{ECal} = \frac{\delta E}{\sqrt{F}} \approx 0.1, \ \epsilon_{HCal} \approx 0.5$

dominant contribution (E_part<50 GeV):

Hcal resolution

WW-ZZ separation

• confusion term

Calorimeter:

F.Gaede, FCC-ee Mini-Workshop, CERN, June 17-18,

- ECal options:
 - SiW: 0.5cm*0.5cm cells
 - SciW: 0.5cm*4.5cm tiles
- HCal options
 - analogue: FeSci: 3cm*3cm tiles
 - semi-digital: Fe-RPC: 1cm*1cm cells

Session: Detector Design in software

DD4hep

Markus Frank / CERN

Detector Description Toolkit

New "standard", it seems:

Motivation and Goal

- Develop a detector description
 - For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - 'Anticipate the unforeseen'
 - Consistent description, single source of information, which supports
 - simulation, reconstruction, analysis
 - Full description, including
 - · Geometry, readout, alignment, calibration etc.
 - **Driven by lazyness of users**
 - Get most out of it with minimal efforts

IID:

 currently in transition to use DD4hep (DDG4/DDRec) for simulation and reconstruction

newCLIC:

Developing **simulation** and **reconstruction** software based on **DD4hep** in collaboration with ILD

FCC:

Adapt software developments from ILC/CLIC

DD4Hep for detector description

Gaede

- Invitation to collaboration:
- many tools (DD4hep, MarlinTrk, aidaTT, PandoraPFA,...) are fairly generic and could be adopted for FCC-ee detectors and physics studies w/o major effort
- we are happy to collaborate with FCC-ee in this direction to exploit synergies between future lepton colliders

Session: Machine Detector Interface

Machine design & final focus

Anton

There are two variants of interaction region. The first one is developed by BINP. The second one belongs to K.Oide and appeared a month ago. Both variants need feedback from the detector for further optimization. The presentation is about BINP design.

Anton/BINP

Oide

Symmetric around IP. Bend of both in- and outgoing beams

- Large SR power through IR
- Relatively strong bends: high E_{crit} of up to 4 MeV (neutrons)

Questions

- From what dipoles synchrotron radiation is dangerous?
- What critical energy of synchrotron radiation photons should be?

Asymmetric: Only bend of outgoing beam

- Lower SR through IR
- Weak bends: lower E_{crit} of 100 keV
- Separated beams: two tunnels over 5-6 km

Session: Machine Detector Interface

Compensation of detector solenoid

Elliptical solenoid: field expansion

Coupling compensation: variant 1

Trajectories at 20g

Compensating H

0.2

0.15 0.1 0.05 E 0

-0.05

-0.1

-0.15E

$$\left\{ egin{aligned} B_{x} &= -x rac{B_{0}^{\prime} R_{y}^{2}}{R_{x}^{2} + R_{y}^{2}} \,, & B_{0}^{\prime} pprox rac{B_{0}}{L} \,, \ B_{y} &= -y rac{B_{0}^{\prime} R_{x}^{2}}{R_{x}^{2} + R_{y}^{2}} \,, & L pprox 2R_{x} \,, \ B_{s} &= B_{0} + s B_{0}^{\prime} \,, & x &= heta s \,. \end{aligned}
ight.$$

$$\begin{split} \varepsilon_y &= C_q \gamma^2 \frac{I5_y}{I2} \,, \quad I5_y = \left(\frac{B_x L}{B\rho}\right)^5 \frac{1}{60 L^2} (-15 L \alpha_y + 20 \beta_y + 3 L^2 \gamma_y) \,, \\ C_q &= 3.84 \cdot 10^{-13} \text{ m, } I2 = 1.68 \cdot 10^{-4} \text{ m}^{-1}, \, B\rho(\text{Tm}) = E(eV)/c(m/c), \\ \alpha_y &= s/\beta_{0,y}, \, \beta_y = \beta_{0,y} + s^2/\beta_{0,y}, \, \gamma_y = 1/\beta_{0,y}. \end{split}$$

A. Bogomyagkov (BINP)

"Crab waist interaction region of FCC-ee, BIN

Screen H=2 T

s,4m

OG G0=-92.4 T/m, R0=1.2 cm, Δ x=3.5 cm, E= 175 GeV G1=87.7 T/m, R1=1.9 cm, Δ x=14.2 cm, 2θ=30 mrad 100mrad 65mrad

9/15

·e+

A. Bogomyagkov (BINP)

"Crab waist interaction region of FCC-ee, BINI

. . . .

Elliptical solenoid=> weaker horizontal fringe fields => lower vertical emittance => high lumi

Summary of two variants coupling compensation

Version	1	1	2
Energy [GeV]	45	45	45
Solenoid	round	elliptical	round
Vertical emittance, pm	60	1	3.6
Luminosity	$\frac{\mathcal{L}_{design}}{\sqrt{60}}$	\mathcal{L}_{design}	$\frac{\mathcal{L}_{design}}{\sqrt{3.6}}$

Compensation behind quads

- Anti solenoid with 8 T is challenging. Could we make it 1m long instead of 0.5 m?
- Operation of the property o

This is serious business:

- The most important magnetic force acting on the first coil is an axial force F_z of 7.0x10⁶N, pushing it away from the interaction point and the main solenoid.

"Anti-solenoid design for CLIC/SiD"

Michele Modena, TE-MSC

Background issues

Beam-Induced Backgrounds

Pair-background

- Coherent e⁺e⁻ pairs: 7 × 10⁸/BX
 - Very forward
- Incoherent e⁺e⁻ pairs: 3 × 10⁵/BX
 - Rather forward
 - High occupancies influence detector design

O yy to hadrons (3.2 events/BX @ 3 TeV)

- Energy deposits (19 TeV/train @ 3 TeV)
- Main background in calorimeters and trackers

N. Nikiforou, 17 June 2015

Removed LHcal. For Lumical and Beamcal: kept dimensions of the ILD design.

In (y, z) plane

Moved FTD disks (not shown) closer to the IP.

E.Perez

From Mogen's talk:

	ont m]	$r_{ m min} \ m [mm]$	$r_{ m max}$ [mm]	θ_{\min} [mrad]	$\theta_{ m max}$ [mrad]
10	000	80	115	80	115
13	300	89	157	68	121
15	600	95	185	63	123

QD0 at z = 2mLumiCal starts at 1.3 m (80 < R < 195 mm as in ILD)BeamCal system a 1.72 m

Pair-production background and event sizes at FCC-ee (Z)

E. Perez (CERN)

Pair-production background

Conclusions

Used the hit multiplicity in VXD and in the TPC to assess the potential increase of the pair-production background when the LumiCal and BeamCal are brought closer to the IP, with QD0 at z = 2m.

No large bokgd is observed in the example considered.

Other aspects of the IR, as discussed yesterday, may have an important effect.

Trigger

Triggers @ LEP

Roberto Tenchini

LEP Trigger Strategy

- In the eighties, experiments were prepared having in mind the high backgrounds of PETRA, however LEP turned out to be a fantastically background-free machine.
- The driving concept was:

Calibration

Reconstruction

Selection

Data storage

accept all annihilation events

Readout system trigger-less "b and c -factory":

 accept two-photon events only if you can (well, in some experiment γγ have been considered background until LEP2 ...)

Anything to learn for FCC-ee?

- LEP precision measurements were not affected by trigger systematic uncertainties because of the large redundancy of the trigger system and a very quiet accelerator
 - preparing for the worst conditions open the possibility to employ redundancy to avoid bias lower systematic uncertainties
- A flexible HLT can always be re-used for other purposes (example from ALEPH Level 3)

full reconstruction and selection in real time

LHCb upgrade (hardware-less) trigger

electronics

Event builder

LHCb upgrade (hardware-less) trigger

CPPM, CNRS/IN2P3

Farm of CPUs

running in real time

Simple/interesting concept:

- Adopted also by newCLIC; readout once per bunch-train (312 BX)
- Appropriate for FCC-ee?
 - Continuous BX (no trains)
 - 5 ns BX separation; physics in every 1000th BX
 - How often would we read detectors: every BX? every 1000 BX?

Software

B. Hegner, CERN

Detector Description

FCC joined these efforts of DD4hep

Objectives and Considerations

Provide robust software to allow physics studies for CDR in 2018

Full and Fast Simulation Goal is to have a combined fast and full simulation

- Decide at the config level where to do what

Analysis

C++ and Python

Analysis should be easy and powerful

Manpower situation

Manpower still very critical Manpower slowly arriving:

Where are we now?

Ideas are getting turned into real code

- Fast/full sim design validated and being turned into real code
- Data model library in 2nd iteration
- Python analysis interface available

FCC Simulation

FCC choices are

- Delphes (*)
- Fast simulation
- Full simulation with Geant4

Should all be accessible from within the same framework

What about iterating on the FCC-ee data cards?

We have a volunteer who might need some co-worker to speed up the process

Fast Simulation - PAPAS

PAPAS is a PArametrized PArticle Simulation package

Presentation in the next FCC-ee detector workshop

Personal Impressions

Very successful workshop with many interesting talks

Thank you to all speakers!

Personally, I learned a lot.

But, don't forget this was a workshop on **Detector Requirements**

I think we did not identify many FCC-ee detector requirements this time around

So, now the real work starts!

Some questions to start with:

- 1. What are the physics processes defining the FCC-ee detector requirements?
 - we go lower in energy than ILC/CLIC, but we have much higher stats
- 2. Momentum resolution, what do we need?
- 3. Jet energy resolution, what do we need?
 - Calorimeter depth?
- 4. Flavour tagging
 - an easy one, we simply need the best!
- 5. Hermeticity?
 - What do we need at small angles?
 - Seems to be potentially difficult around very crowded IR region
- 6. Luminosity measurement, how to get what we need?
 - Again, crowded IR region seems to be problematic
- 7. ...