Determination of $\alpha_{OED}(m_z)$ @ FCC-ee

Outline

- Basics
 - Why measure $\alpha_{QED}(m_Z)$?
 - The FCC-ee potential
- ♦ The e⁺e⁻ \rightarrow μ ⁺ μ ⁻ cross section
 - Expected integrated luminosity
 - Luminosity measurement
 - Uncertainty on α_{QED}
- The μ⁺μ⁻ forward-backward asymmetry
 - \bullet Sensitivity to α_{QED}
 - Uncertainty on α_{QED}
- Summary
 - Combination
 - Running
- Conclusion and Outlook

Why measure $\alpha_{QED}(m_Z)$?

- Uncertainty dominant in the interpretation of precision measurements
 - Limits severely the potential for new physics exploration at the FCC-ee
 - Would require the current uncertainty to be reduced by at least a factor 5
 - Current uncertainty dominated by extrapolation from $\alpha_{OED}(0)$ to $\alpha_{OED}(m_z)$:

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta\alpha_{\rm L}(s) - \Delta\alpha_{\rm HAD}(s)} \qquad \text{with} \quad \Delta\alpha_{\rm HAD}(M_Z^2) = \frac{\alpha\,M_Z^2}{3\,\pi}P\int_{4m_\pi^2}^\infty \frac{R(s)}{s(M_Z^2 - s)}ds$$

- Where R(s) is the (experimental) normalized e⁺e⁻ → hadrons cross section
 - → Affected by the many resonances at low energies
- Latest estimate

$$\Delta \alpha_{\text{had}}(M_Z^2) = (275.0 \pm 1.0) \cdot 10^{-4}$$

arXiv:1010.4180, Davier et al.

- Corresponds to a relative uncertainty of 1.1×10⁻⁴ on $\alpha_{OED}(m_Z)$
 - To be reduced by a factor at least 5, i.e., to 2×10⁻⁵ or better

arXiv:1308.6176, First look at TLEP

The FCC-ee potential for $\alpha_{QED}(m_z)$

- Is the large luminosity of FCC-ee sufficient to improve?
 - Could use the FCC-ee to measure $\sigma(e^+e^- \to \mu^+\mu^-)$ and $A_{FB}^{\mu\mu}$ at (a) judicious \sqrt{s}

See for example:

- Leike, Riemann, hep-ph/9508390
- L. Berthier, M. Trott, arXiV:1502.0257
- The γ exchange term is proportional to $\alpha^2_{QED}(\sqrt{s})$
- $\bullet~$ The Z exchange term is proportional to $\text{G}^{\scriptscriptstyle 2}_{\,\text{F}}\text{,}$ hence independent of $\alpha_{\scriptscriptstyle QED}$
- The γ Z interference is proportional to $\alpha_{QED}(\sqrt{s}) \times G_F$
 - ightharpoonup The run at the Z pole is of course not well suited to the $\alpha_{OED}(m_Z)$ measurement
- If the chosen \sqrt{s} is close to m_Z (say, between 50 and 150 GeV)
 - The extrapolation to m₇ is not affected by e⁺e⁻ resonances at small energies
 - ➡ The theoretical uncertainty from the limited running becomes negligible

The $e^+e^- \rightarrow \mu^+\mu^-$ cross section

□ With \sqrt{s} from 50 to 150 GeV, ISR corrected, with s'/s > 0.95, in ab

- A priori calls for as small a \sqrt{s} as possible (provided that FCC-ee can run at this energy)
 - Largest photon-exchange cross section, smallest Z contamination

Uncertainty on α_{QED} from $\sigma_{\mu\mu}$ measurement (1)

- Assume we can measure $\sigma_{\mu\mu}$ with a precision $\delta\sigma_{\mu\mu}$ at a given \sqrt{s}
 - ullet The cross section can be parameterized as a function of $lpha_{\sf OED}$ as follows

$$\sigma_{\mu\mu}(\alpha) = z + \frac{\alpha}{\alpha_0} I(\alpha_0) + \frac{\alpha^2}{\alpha_0^2} \gamma(\alpha_0)$$

• Where I, z, and γ are the interference and the Z/ γ exchange terms ($\alpha = \alpha_0$)

• Hence
$$\delta \sigma_{\mu\mu} = \frac{\delta \alpha}{\alpha} I(\alpha_0) + \frac{2\alpha \delta \alpha}{\alpha^2} \gamma(\alpha_0)$$

• Or
$$\frac{\delta \alpha}{\alpha} = \frac{\delta \sigma_{\mu\mu}}{I(\alpha_0) + 2\gamma(\alpha_0)} \approx \frac{\delta \sigma_{\mu\mu}}{2\gamma(\alpha_0)}$$

• $\delta\sigma_{\mu\mu}$ depends on the number of $\mu\mu$ events and on the error on the luminosity: $\sigma_{\mu\mu} = N_{\mu\mu}/L$

$$\left(\frac{\delta\sigma_{\mu\mu}}{\sigma_{\mu\mu}}\right)^{2} = \left(\frac{\delta N_{\mu\mu}}{N_{\mu\mu}}\right)^{2} + \left(\frac{\delta L}{L}\right)^{2}$$

Expected luminosity in ab⁻¹ / year

- With the current crabbed-waist option (and 4 IPs)
 - Almost 60,000 bunches at the Z pole: all RF buckets are used
 - Expect the luminosity to linearly decrease with √s below m_z
 - Use Frank Zimmermann's (@ Washington) numbers above m_Z

Luminosity measurement (1)

- Historically done with Bhabha scattering at small angle
 - Might prove difficult at FCC-ee
 - Very sensitive to fiducial acceptance definition
 - Small angle region busy with other things
 - Future theoretical uncertainty (NNLO) limited to about 2×10⁻⁴ S. Jadach, hep-ph/0306083
 - ⇒ Part of the uncertainty (~10⁻⁴) come from $\Delta\alpha_{had}$!

See also Z. Was, RadCor Workshop, 13-14 July 2015

Quite a few graphs even at lowest order

- → Depends on Z parameters (especially if angle not as small as at LEP)
- Lots of radiative corrections involved between initial and final legs

Luminosity measurement (2)

- How about large-angle photon-pair production instead?
 - Only "one" graph at lowest order very poor literature at NLO and beyond

H.-U. Martyn, Adv.Ser.Direct.High Energy Phys. 7 (1990) 92-161

$$\sigma(e^+e^- \to \gamma\gamma) = \frac{2\pi\alpha^2}{s} \left\{ \ln \frac{1 + \cos\theta_{min}}{1 - \cos\theta_{min}} - \cos\theta_{min} \right\}$$

 (θ_{min}) defines the ECAL acceptance)

- Pure QED process, with few radiative corrections between initial legs and propagator
 - ullet NLO QED correction to σ_{tot} and three- / four-photon LO diff. cross sections known
 - ➤ Work needed for NLO + NNLO corrections at large angle
 - ➡ Reduce theory errors by a factor 10 with respect to low-angle Bhabha?
- Cross section proportional to $\alpha^2_{QED}(o)$, not to $\alpha^2_{QED}(\sqrt{s})$
 - ullet L. Trentadue: "This process has no dependence on $\Deltalpha_{
 m had}$ at least up to NNLO"
- Cross section is much smaller than low angle Bhabha, but not that small
 - Example on next slide, for θ_{γ} > 20° with respect to the beam axis

Luminosity measurement (3)

 $_{\mbox{\scriptsize \square}}$ Photon-pair production cross-section larger than γ exchange in $\sigma_{\!\mu\mu}$

- Can also normalize σ_{yy} to the Z peak cross section at $\sqrt{s} = m_Z$
 - In case theory uncertainties turn out to be too large

Luminosity measurement (4)

Statistical uncertainty within a year (w/ crabbed-waist config. , 4 IPs)

- ◆ In the following, assume a theory uncertainty of 2×10⁻⁵
 - Matches well the possibility of normalization with the Z peak cross section

Uncertainty on α_{QED} from $\sigma_{\mu\mu}$ measurement (2)

Reminder: Statistical uncertainty (including theory error on lumi)

$$\frac{\delta\alpha}{\alpha} = \frac{\delta\sigma_{\mu\mu}}{2\gamma(\alpha_0)}$$

with
$$\left(\frac{\delta\sigma_{\mu\mu}}{\sigma_{\mu\mu}}\right)^2 = \left(\frac{\delta N_{\mu\mu}}{N_{\mu\mu}}\right)^2 + \left(\frac{\delta L}{L}\right)^2$$

Uncertainty on α_{QED} from $\sigma_{\mu\mu}$ measurement (3)

- □ Systematic uncertainties to be studied and controlled to ~10⁻⁵!
 - Detector acceptance modelling (for muons and photons)
 - Muon and photon reconstruction efficiency
 - Backgrounds from tau pairs and Bhabha
 - All the above can be controlled at the Z pole with the requested precision
 - Dependence on Z parameters ($\sin^2\theta_W$, Γ_Z , M_Z , σ_o , ...)
 - Theory prediction for the dimuon and diphoton cross sections
 - "Radiative corrections" workshop (July 13-14) will pave the way See Z. Was talk
- Provided these systematic uncertainties are mastered (difficult)
 - ◆ The requested precision for α_{QED} in within reach for $\sqrt{s} \le 70$ GeV, with a year of running
 - In the crabbed-waist option, with 4 IP's
- Additional channels can potentially further improve the precision
 - \bullet e⁺e⁻ \rightarrow τ ⁺ τ ⁻
 - e⁺e[−] → hadrons
 - Experimentally more difficult (systematic uncertainties), to be studied

Summary for $\sigma_{\mu\mu}$

- Systematic uncertainties are challenging
 - Measuring a cross section to a precision of 10⁻⁵ is somewhat "crazy"
 - Need to predict absolute cross sections and efficiencies at this level
 - ⇒ For the signal $e^+e^- \rightarrow \gamma \rightarrow \mu^+\mu^-$
 - **▶** For the irreducible background $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$
 - For the luminosity measurement e⁺e⁻ → γ γ
 - For all the reducible backgrounds
 - Need to run the machine at yet another, very different, energy
 - ⇒ $\sqrt{s} = 50 70$ GeV might reveal difficult / different challenges
 - → One year at this energy is one year less for the FCC-ee core programme
- Is it possible to find another observable?
 - Less affected by systematic uncertainties
 - With a beam energy closer to those used for the core programme
- The answer is ... YES!

The forward-backward asymmetry A_{FB}^{μμ}

A measurement potentially free of theory error

- Self normalized
- Lots of uncertainties cancel in the ratio
 - Including experimental uncertainties

$$A_{FB}^{\mu\mu} = \frac{N_F^{\mu\mu} - N_B^{\mu\mu}}{N_F^{\mu\mu} + N_B^{\mu\mu}}$$

Sensitivity of $A_{FR}^{\mu\mu}$ to α_{OFD} (1)

- Assume we can measure $A_{FB}^{\mu\mu}$ with a precision $\delta A_{FB}^{\mu\mu}$ at a given \sqrt{s}
 - ullet The asymmetry can be parameterized as a function of $lpha_{\text{OED}}$ as follows

$$A_{FB}^{\mu\mu}(lpha) \propto rac{\dfrac{lpha}{lpha_0} I(lpha_0)}{z + \dfrac{lpha^2}{lpha_0^2} \gamma(lpha_0)}$$

- Where I, z, and γ are the interference and the Z/ γ exchange terms ($\alpha = \alpha_0$)
- Hence $\delta A_{FB}^{\mu\mu} \propto \frac{I(z-\gamma)}{\sigma_{...}^2} \frac{\delta \alpha}{\alpha}$ or $\frac{\delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu\mu}} = \frac{z-\gamma}{\sigma_{...}} \frac{\delta \alpha}{\alpha}$

$$\frac{\delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu\mu}} = \frac{z - \gamma}{\sigma_{\mu\mu}} \frac{\delta \alpha}{\alpha}$$

- No dependence on α_{QED} when Z and γ exchange are equal
 - i.e., when the interference is maximal : $\sqrt{s} = 78$ GeV and $\sqrt{s} = 114$ GeV
- No dependence on α_{OFD} when the interference term / the asymmetry vanishes
 - i.e., at the Z pole : $\sqrt{s} = m_7$
- Relative sign of δA_{FB} and $\delta \alpha$ changes at these three values of \sqrt{s}
 - Important remark when it comes to evaluate systematic uncertainties (see later)

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{QED} (2)

Sensitivity quite dependent on √s

Best just above and just below the Z pole

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{QED} (3)

□ Turning the previous plot in a $|\delta\alpha/\alpha|$ plot, for a year of running at any \sqrt{s}

♦ Best measurement (2.5 × 10⁻⁵ within a year) at \sqrt{s} = 88 GeV

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{QED} (4)

Systematic uncertainties

- Charge inversion (from double charge mismeasurement): can be measured from data
 - Already at the level of 2×10⁻⁵ with the L₃ detector not a worry.
- Acceptance asymmetries
 - Can be controlled at the Z pole
- Cosmic ray background
 - Can be controlled with off-collision data
- Effect of ISR on A_{FB}
 - Should be small as $\sqrt{s'}$ can be determined from muon angles (and momenta)
- Dependence on Z parameters
 - See next slide
- Theoretical prediction accuracy on A_{FB}^{μμ}

See Z. Was talk at RadCor Workshop, 13-14 July 2015 Was taken to be 10^{-4} at LEP (ZFITTER/TOPAZ0 difference) Need one order of magnitude better

Further improvement?

- ♦ A factor of almost $\sqrt{2}$ can be gained right away with e⁺e⁻ → τ ⁺ τ ⁻
 - Without additional systematic uncertainty
 - ⇒ The 2×10⁻⁵ goal can be reached with one year at \sqrt{s} = 88 ± 1 GeV

Or one year at $\sqrt{s} = 95 \text{ GeV}$

Or 6 months at each energy (better, see next slide)

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{OFD} (5)

Dependence on Z parameters

- ◆ The derivative of A_{FB} with \sqrt{s} is ~largest at 88 and 95 GeV
 - Hence, for a given \sqrt{s} , the absolute knowledge of m_7 is essential
 - ⇒ An uncorrelated error of 50 keV on m_Z and \sqrt{s} is equivalent to 2×10⁻⁵ on α_{OED} (x)
 - However, the only quantity of interest is $\sqrt{s} m_z$
 - ⇒ A point-to-point energy calibration of 0.1 MeV leads to $\delta\alpha_{OED}/\alpha_{OED}$ = 2×10⁻⁶ \Box

- The dependence on Γ_7 is minute
 - $d\Gamma_7 = 0.1$ MeV leads to $\delta\alpha_{OFD}/\alpha_{OFD} = 10^{-6}$
- The dependence on $\sin^2\theta_w$ is large (will be the dominant Z-parameter uncertainty)
 - Indeed $A_{FB}^{\mu\mu}$ is used at the Z pole (no dependence on α_{OFD}) to measure $\sin^2\theta_W$
 - ⇒ With the current uncertainty (1.6×10⁻⁴), $\delta\alpha_{OFD}(s)/\alpha_{OFD}(s) \sim 10^{-3}$ at 88/95 GeV!
 - However, $\alpha_{OFD}(88)$ and $\alpha_{OFD}(95)$ vary in opposite directions with $\sin^2\theta_W$
 - ⇒ Leads to large cancellations in the fit for $\alpha_{OED}(m_Z)$ [1/ α (s) ≈ a + b Log(s/m_Z)] With the current uncertainty, $\delta \alpha_{OFD}(m_7) / \alpha_{OFD}(m_7) \sim 2 \times 10^{-4}$
 - ⇒ FCC-ee plans for $\delta \sin^2\theta_W \sim 6 \times 10^{-6}$ with $A_{FB}^{\mu\mu}$ at the Z pole A. Blondel, March '15 Corresponds to $\delta \alpha_{QED}(m_z) / \alpha_{QED}(m_z) \sim 7 \times 10^{-6}$ OK!

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{QED} (6)

□ Variation of $A_{FB}^{\mu\mu}$ for $\delta \sin^2\theta_w = +1.6 \times 10^{-4}$:

• (See slide 15 for the sign of the derivative of A_{FB} with respect to α_{QED})

Sensitivity of $A_{FB}^{\mu\mu}$ to α_{QED} (7)

- Effect of Initial State Radiation
 - ◆ The derivative of A_{FB} with \sqrt{s} is ~largest at 88 and 95 GeV
 - $\bullet~$ The effect of ISR on α_{OFD} is therefore maximal at these energies
 - **▶** Without any anti-ISR cut, $\delta A_{FB}/A_{FB} = +3.7\%$ (-7.1%) at 88 (95) GeV
 - **♦** The hard collision centre-of-mass energy $\sqrt{s'}$ can be obtained from the muon angles
 - If exactly one photon is radiated (need the muon momenta for two photons)

$$\frac{s'}{s} = \frac{\sin \theta_1 + \sin \theta_2 + \sin(\theta_1 + \theta_2)}{\sin \theta_1 + \sin \theta_2 - \sin(\theta_1 + \theta_2)}$$

- Precision on $\sqrt{s'}$ of the order of 10^{-3} for $\sigma_{\theta} = 1$ mrad (multiple scattering)
- Preliminary Monte Carlo study (allowing up to two ISR photons)
 - Anti-ISR cuts : s'/s > 0.99, and $p_{\mu} > 0.99$ E_{beam}
 - $\rightarrow \delta A_{FB}/A_{FB} = +0.75\% (-0.70\%) \text{ at } 88 (95) \text{ GeV}$

$$\delta \alpha_{\rm QED} / \alpha_{\rm QED} = +0.84\%$$
 (-0.88%) at 88 (95) GeV

- Without any ISR spectrum knowledge, nice cancellation at the level of a few 10-4
 - Reduced to a few 10⁻⁶ if ISR spectrum is known to 1%

Summary (1)

Combination of cross section (μμ) and A_{FB} (μμ and \tau\tau), in a year (CW, 4IPs)

- ◆ Get to 2×10^{-5} at $\sqrt{s} \le 70$ GeV (cross section) and 88 / 95 GeV (forward-backward asym.)
 - Also with cross section at 125 GeV (5×10⁻⁵), 160 GeV (8×10⁻⁵) or 240 GeV (1.2×10⁻⁴)

Summary (2)

- Can even see the actual running of the EM coupling constant
 - With incredible accuracy:

- With a fit of $1/\alpha(s)$ to a + b Log(s/m_Z)
 - Get an uncertainty of 1.4×10⁻⁵ on $\alpha_{QED}(m_Z)$
 - With data at 88 (1y), 91 (<0.5y), 95 (1y), 125 (1y), 160 (1y) and 240 GeV (3y)</p>

Increased to 1.8×10⁻⁵ with only six months at 88 and 95 GeV each.

• Reduced to 1.2×10⁻⁵ with 1 year at 70 GeV in addition

Conclusions and outlook (1)

- f au A good way to determine $lpha_{
 m QED}$ (m $_{
 m Z}$) at FCC-ee is to measure A $^{
 m FB}_{
 m ~\mu\mu}$
 - ♦ At Peak-3.5 (\sqrt{s} ~ 88 GeV) and Peak+3.5 (\sqrt{s} ~ 95 GeV)
 - As well as at $\sqrt{s} \sim m_7$ to determine $\sin^2 \theta_W$ with the necessary accuracy
- With four IP's and crabbed-waist luminosity at full RF power
 - A total of six months running at each three points is enough
 - To reach a relative precision better than 2×10^{-5} on $\alpha_{OED}(m_z)$ [Current: 1.1×10⁻⁴]
 - It is at most a small extenstion of the FCC-ee core programme
- Experimental uncertainties need to be studied in details
 - Uncertainties on the Z parameters seem to be under control
 - ◆ The precision with which ISR needs to be simulated does not exceed 1%
 - Benefits from good μ direction and momentum measurement (how good?)
 - Detailed study might give some insight on the tracker characteristics
 - ➡ Di-tau final state requires more investigation
- Theory uncertainties are under study
 - See the presentation of Z. Was at the forthcoming RadCor workshop (13-14 July)

Conclusions and outlook (2)

- A side note: the requested beam energies are also part of the Z scan
 - They can be measured with resonant depolarization
 - Provided that the corresponding spin tune is half integer
 - **▶** For example

Spin Tune	√s (GeV)	Scan name	Run (cw, 4IP)	Physics
99.5	87.6890714	Peak -4	3 months	$lpha_{ t QED}$
100.5	88.5703686	Peak - 3	3 months	$lpha_{ t QED}$
101.5	89.4516658	Peak -2	1 month	m_{Z} , Γ_{Z}
103.5	91.2142602	Peak	2.5 years	m_{z} , sin ² θ $_{W}$, $α_{s}$, N_{v}
105.5	92.9768546	Peak+2	1 month	m_{Z} , Γ_{Z}
107.5	94-7394490	Peak+3	6 months	$lpha_{ extsf{QED}}$
108.5	95.6207462	Peak+4	?	?

Conclusions and outlook (3)

- Bonus of the study: Absolute luminosity measurement with $e^+e^- \rightarrow \gamma \gamma$
 - ◆ An experimental precision of 2×10⁻⁵ is possible at $\sqrt{s} = m_7$
 - In the crabbed-waist configuration to have enough events
 - Without the need of a small-angle luminometer
 - ◆ This precision needs to be backed-up with (N?)NNLO cross-section prediction
 - See talk from Zbigniew Was on 14 July
 - A small angle luminometer is still needed for the relative luminosity measurements
 - In order to measure the Z width with a scan of the resonance
 - → Otherwise, the error will be dominated by the stat. uncertainty on L Because a moderate luminosity is needed at each of the points
 - The limited role of the small angle device may have consequences on its design
 - By relaxing a number of constraints otherwise imposed to it
 - Study to be taken over in the Detector Designs and Experimental Environment groups