Status Report

Tokyo Institute of Technology

Masahiro Tanaka 16 June 2015

Table of contents

- Analysis using Delphes
 - Pythia samples in lxplus shared directory are used
 - \bullet Total ET cut is removed because S/ \surd N dose not depend on with or without this cut
 - New event selection was tried but not succeeded
 - Resolution of hadronic calorimeter and coverage of b-tagging are changed and compared

Result of cut base analysis

- Pythia samples in lxplus shared directory are used
- Fixed b-tagging efficiency (b: 60%, c: 10%, light: 1%)
- 100fb⁻¹ is assumed
- \bullet Signal region is defined as 100< M_{bb} < 130 GeV
- Without total ET cut (explained in next slide)

2 b-jets mass

Used sample

	σ (pb)	Nsample	N/σ(fb⁻¹)
CC: H->bb	0.063	200K	3170
CCjjj no top	2.5	300K	120
CCtj	0.43	150K	350
CC Z only	0.29	100K	345
NC Z only	0.13	100K	770
PAjjj	38	900K	22

Total ET cut

• Total ET cut is not so important for S/\sqrt{N} because shape of distribution w.r.t each sample is almost same

- S/ \sqrt{B} dose not depend on with or without total ET cut
- Subsequent analysis is performed without total ET cut

New event selection

- Using Njet>=3 and Nbjet>=2 cut, events with 2 b-jets (no other jets) were removed
- I considered if 2 b-jets events can be selected
 - ${\scriptstyle \bullet}$ Top and W mass cut, and light-jet $\eta\,$ cut can't be applied
 - Analysis was performed without these cuts

Result including 2 b-jets events

	default	default + 2b-jets events
CC: H->bb	119±2	316±3
CCjjj no top	9±3	55±7
CCtj	17±2	285±9
CCzonly	7±1	46±4
total CCbkg	33±4	386±12
NCzonly	0	0
PAjjj	73±17	374±39
total NCkbg	73±17	374±39
S/√N	11.5±1.0	11.5±0.3

Reducing bkg is difficult for 2 b-jets events

Resolution of hadronic calorimeter

 Since better resolution of HCal decrease background events and keep signal events, S/\sqrt{N} become better

Coverage of b-tagging

- η distribution of b-tagged jets were strange because coverage of b-tagging was defined by the eta of true parton
- ${\scriptstyle \bullet}$ I redefined the coverage of b-tagging by $\eta\,$ of jets
 - B-tag coverage
 1 | η | <2.7 2 | η | <3.7 3 | η | <4.7

Coverage of b-tagging

- Wider coverage of b-tagging increase both signal and background events
- S/√N dose not become better simply as coverage of b-tagging is expanded
 Wider
- Tighter cut or additional cut need to be applied as coverage is expanded

Summary

- Analysis using Delphes
 - Pythia samples in lxplus shared directory are used
 - ${\scriptstyle \bullet}$ Total ET cut is removed because S//N dose not change
 - Using 2 b-jets (no other jets) events is tried but dose not lead to good result
 - Better HCal resolution makes good background reduction
 - ${\rm \bullet}$ Wider coverage of b-tagging increase both signal and background, so tighter or additional cut need to be added to result in good S/ $\!\sqrt{N}$

backup

Number of jet (PT>20GeV)

Number of b-jet (PT>20GeV)

Number of electron

11

Momentum transfer Q

— higgs

- CCjjj no top

- CCtj
- CCzonly

— NCzonly

— PAjjj

$$Q_h^2 = \frac{(\sum_{hadron} p_x)^2 + (\sum_{hadron} p_y)^2}{1 - y_h}$$
$$y_h = \frac{\sum_{hadron} (E - p_z)}{E_e}$$

13

$\Delta \phi$ between 2 b-jets and missing ET

