Crab cavity HOM impedance requirements and transverse damper upgrade

N. Biancacci,
K. Li, E. Métal and B. Salvant

HiLumi WP2 Task Leader meeting
02-10-2015

Acknowledgements: R. Calaga, R. De Maria
Outline

1. Introduction
 - Update of HOM list

2. HOM & octupole thresholds
 - Growth rate
 - Octupole threshold
 - Single bunch octupole thresholds
 - Coupled bunch octupole thresholds

3. Crab Cavities statistical simulations
 - Coupled bunch studies
 - Single bunch studies
 - Gain increase

4. Conclusions and next steps
The crab cavities impedance model has been recently updated to last HOM tables:

- **DQW update**: EDMS - 1518298, 03-07-2015, (*HOM impedance reference model*)

What changed?

- No change for the DQW that still presents the high HOM ≈1.75 GHz with $R_s \approx 362 \, M\Omega/m$.
- Last update from RCalaga (30-09-2015) → this HOM has been reduced to $R_s \approx 0.8 \, M\Omega/m$. This is being checked with BNL to assess if other HOMs are affected.
- The RFD HOMs stay below few $M\Omega/m$.
We systematically study the effect of an HOM added to the HL-LHC baseline:

- $R_s \in (100 \, k\Omega/m, ..., 100 \, G\Omega/m)$
- $f_{res} \in (100 \, MHz, ..., 2 \, GHz)$
- $Q = 1000$ fixed in order to be overlapping with single and coupled bunch spectral lines.

Scenario: Single bunch, 50 turns damper, $Q' = 5$, $N_b = 2.2 \cdot 10^{11}$ ppb, $\sigma_z = 8.1$ cm.

HL-LHC impedance baseline: Low impedance collimators (MoC$+5\mu m$ Mo on IP7).

HL-LHC optics: $\beta^* = 15 cm$, V1.1.
We systematically study the effect of an HOM added to the HL-LHC baseline:

- \(R_s \in (100 \, k\Omega/m, ..., 100 \, G\Omega/m) \)
- \(f_{res} \in (100 \, MHz, ..., 2 \, GHz) \)
- \(Q = 1000 \) fixed in order to be overlapping with single and coupled bunch spectral lines.

Scenario: Single bunch, 50 turns damper, \(Q' = 5, N_b = 2.2 \cdot 10^{11} \) ppb, \(\sigma_z = 8.1 \) cm.

HL-LHC impedance baseline: Low impedance collimators (MoC+5µm Mo on IP7).

HL-LHC optics: \(\beta^* = 15cm, V1.1 \).

![Graph](image)

\(\rightarrow \) From \(R_s \approx 1 \, G\Omega/m \) we exceed the baseline impedance model.
Projecting over a single frequency we can define the threshold looking at the Growthrate vs R_s:

→ From $R_s \approx 1 \, \text{G\Omega/m}$ we exceed the baseline impedance model.
We now investigate what is the octupole current needed to stabilize each HOM at a given frequency, assuming:

- $\varepsilon_n = 2.5 \, \mu m$,
- Gaussian distribution,
- Positive octupole sign (similar for negative sign).

\rightarrow For each frequency we can now determine what R_s will provoke an arbitrarily chosen increase of stabilizing octupole current w.r.t. baseline.

\rightarrow In this way we can draw an octupole threshold curve in function of the HOM frequency.
Single Bunch (SB) stability limits considering an increase of 10, 50 and 100 A w.r.t. the HL-LHC baseline normalized to Q and weighting the HOMs by $\beta_{crab}/\beta_{av} \approx 50$ for 1 cavity.

Reminder: baseline octupole threshold @ Q'=5 is 30 A for negative octupole sign, 70 A for positive sign.

This plot can be used in a design stage tuning each of the modes below the thresholds.

→ Both DQW and RFD are well below the octupole threshold for an increase of 10 A.
→ N.B.: Each HOM point is a worst case (i.e. if the SB line falls on it). For very narrow modes, a statistical analysis completes the picture (see next slides).
→ N.B.: No interplay from the modes is assumed.
With a similar approach we derive the Coupled Bunch (CB) stability limits considering an increase of 10, 100 and 1000 A w.r.t. the HL-LHC baseline.

Reminder: baseline octupole threshold @ $Q' = 5$ is 30 A for negative octupole sign, 70 A for positive sign as in SB.

→ The DQW presents the mode at 1.75 GHz who leads to more than 1000 A increase of octupole current if a CB spectral line falls on it.

→ Less critical is the DQW 920 MHz mode (+100 A).

→ The RFD is below within the 10A threshold.
We performed a set of 100 simulations of possible crab cavities HOM configurations on top of the baseline HL-LHC impedance model accounting for:

- 16 crab cavities in total (baseline now to 8: to be updated).
- Variable frequency spread of $\pm 3\, MHz$ between each cavity in each simulation.

For the RFD design, considering the octupole current required for each simulation and deriving the probability density function, we get:

\rightarrow For positive octupole sign, the threshold is increased from $\approx 70\, A$ to $\approx 150\, A$.
\rightarrow For negative octupole sign, the threshold is increased from $\approx 30\, A$ to $\approx 70\, A$.

RFD update Qp5 d0p02 plane x M2748 gaussian eps2.5um Nb2.2e11 $\sigma_z=0.081m$
The **DQW design** is compared with the 1.75 GHz mode . . .

![DQW design comparison](image)

. . . and without it:

![DQW without 1.75 GHz](image)

1) The 1.75 GHz would provoke machine dumps the 60% of the time ($I > I_{\text{max}} = 550$ A).

2) Removing it, the driving mode is expected to be the 920 MHz (threshold moved to ≈ 150 A for negative octupole sign, and ≈ 320 for positive sign.

3) Allowing for a smaller R_s for the 1.75 GHz mode (R. Calaga update), would place it in the shadow of the 920 MHz mode: the situation would not deviate much from the case 2).
Single bunch results for **DQW design**:

![DQW update](image)

→ In both cases the increase in octupole current is negligible (< 10A).

Single bunch results for **RFD design**:

![RFD update](image)
For the negative sign of the octupole we require:

1. A current of 70 A for the RFD design.
2. A current of 150 A for the DQW design (without 1.75 GHz mode).

Can we reduce the CB octupole threshold required by increasing the damper gain?
For the negative sign of the octupole we require:

1. A current of 70 A for the RFD design.
2. A current of 150 A for the DQW design (without 1.75 GHz mode).

→ For the baseline HL-LHC model, there is no reduction when adding damper gain over different Q'.
→ Statistical simulations with Crab cavities on top of the HL-LHC are still on-going...
Conclusions I

- We developed a method to assess *a priori* the compatibility of an HOM with the octupole current budget of the HL-LHC at $\beta^* = 15 \text{ cm}$, both for single bunch (SB) and coupled bunch (CB) cases.

 \rightarrow An HOM with $\beta_{\text{crab}}/\beta_{\text{av}} \cdot R_s/Q \simeq 1 \text{ M}\Omega/m$ (or equivalently $R_s/Q \simeq 20 \text{ k}\Omega/m$) requires $\approx 10 \text{ A}$ to be stabilized in SB regime.

 \rightarrow An HOM with $\beta_{\text{crab}}/\beta_{\text{av}} \cdot R_s \simeq 10 \text{ M}\Omega/m$ (or equivalently $R_s/Q \simeq 200 \text{ k}\Omega/m$) requires $\approx 10 \text{ A}$ to be stabilized in CB regime.

- The RFD and DQW design have been found to be compatible with respect to single bunch stability threshold:

 \rightarrow Both RFD and DQW design require an increase of the octupole current needed $\approx 10\text{A}$.

- The DQW design, as it is now, is not compatible with current the HL-LHC CB stability limits:

 \rightarrow The 1.75 GHz mode provokes exceeding of the maximum octuple current 60% of the cases simulated.

- If the 1.75 GHz mode of the DQW is reduced to the level of $0.8 \text{ M}\Omega/m$ (as it should now be...) it would require, together with the other HOMs:

 \rightarrow $\approx 150 \text{ A}$ for negative octupole sign (HL-LHC baseline respectively at 30 A).

 \rightarrow $\approx 320 \text{ A}$ for positive octupole sign (HL-LHC baseline respectively at 70 A).
Conclusions II

- The RFD design is compatible with current the HL-LHC stability limits for CB:
 - For positive octupole sign, the threshold is increased from \(\approx 70 \, \text{A} \) to \(\approx 150 \, \text{A} \).
 - For negative octupole sign, the threshold is increased from \(\approx 30 \, \text{A} \) to \(\approx 70 \, \text{A} \).

- Increasing the damper gain from 50 to 20 turns is not reducing the baseline octupole current needed for the HL-LHC.
 - For \(Q' = 5 \) the baseline threshold is increased of a factor \(\approx 2 \).
 - For \(Q' = 10 \) the baseline threshold is almost unchanged (50 A).
 - Statistical simulation on baseline + Crab cavities on going...

- If we collide at \(\beta^* = 70 \) we can gain a factor \(\approx 5 \) and lower accordingly the octupole current thresholds.
Next steps and open questions

- Simulations for the present crab cavity scenario (8 crabs instead of the 16 simulated here), and mixed RFD-DQW scenario.

- How do we include in this frame the recent measurements on the LHC showing a factor 5 increase in octupole current?

- …
Thank you for your attention!
LHC single and coupled bunch octupole thresholds.