

Update on e-cloud activities

G. ladarola, A. Axford, K. Li, A. Romano, G. Rumolo

For details:

http://indico.cern.ch/event/396577/http://indico.cern.ch/event/446452/

Update on PyHEADTAIL simulations

For details:

http://indico.cern.ch/event/394530/http://indico.cern.ch/event/446452/

Lessons learned from the 25 ns run so far

For details:

For details:

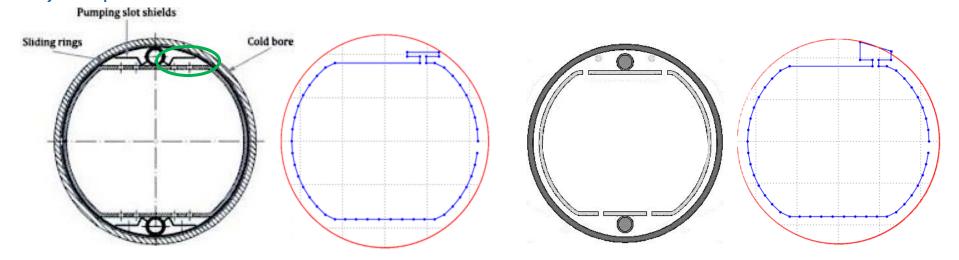
http://indico.cern.ch/event/396577/http://indico.cern.ch/event/446452/

Update on PyHEADTAIL simulations

For details:

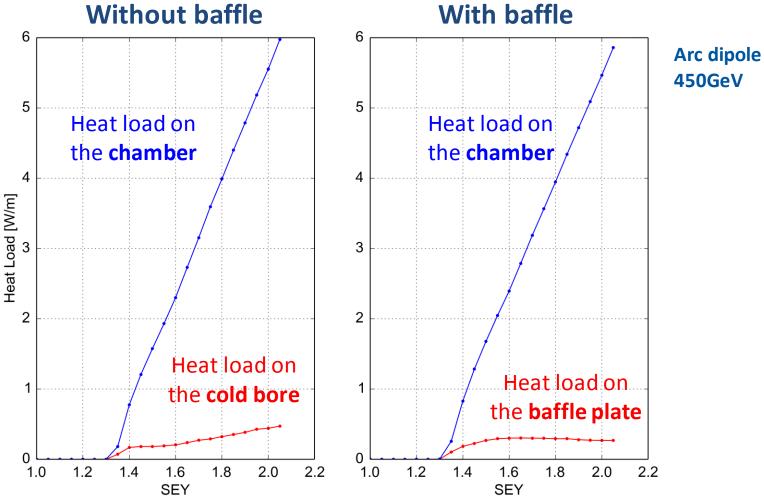
http://indico.cern.ch/event/394530/http://indico.cern.ch/event/446452/

Lessons learned from the 25 ns run so far


For details:

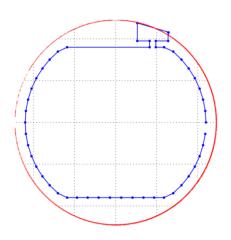
CERN

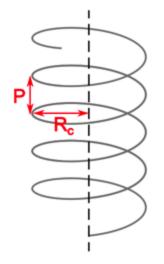
e-cloud buildup with/without shielding baffle plates

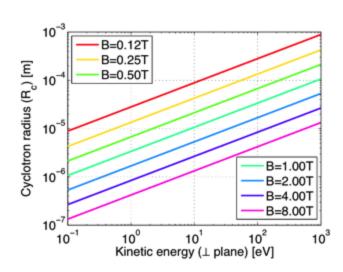

LHC beam screen with baffle plate

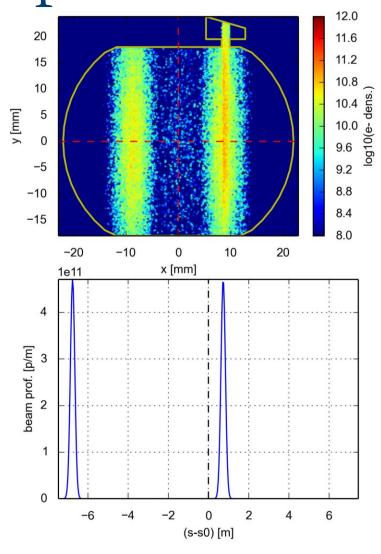
LHC beam screen without baffle plate

- Goal: check the need to shield the pumping holes to avoid multipacting with the cold bore
 - Check whether electric shielding provided by the beam screen is already sufficient to suppress multipacting
- PyECLOUD had to be modified in order to handle non convex boundaries:
 - Electron impact detection and handling
 - Boundary condition in the PyPIC space charge module (to continue using Shortley-Weller refined boundary)




- Assuming the SEY equal to 1.4, the heat load deposited is almost 0.15 W/m for both cases
 - → baffles protect the cold bore from a non regligible heat load


Underlying mechanim


- At 450GeV **B=0.53 T**: cyclotron radius does not exceed few micrometers
 - → Practically Electrons practically move only in vertical
- The kinetic energy of secondary electrons is not larger than 30 eV
 - → It is enough for them to make **few mm per ns**
 - → Electrons can make it to go back into the chamber before the following bunch passage even without being accelerated by the beam

EC build-up

For details:

http://indico.cern.ch/event/396577/ http://indico.cern.ch/event/446452/

Update on PyHEADTAIL simulations

For details:

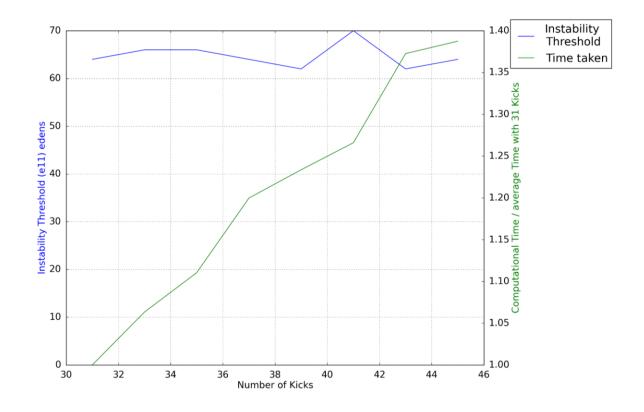
http://indico.cern.ch/event/394530/http://indico.cern.ch/event/446452/

Lessons learned from the 25 ns run so far

For details:

e-cloud instability simulations for the HL-LHC

- We simulated the interaction of a single bunch with the electron cloud in the dipoles
 and in the quadrupoles separately scanning the bunch intensity and the electron density
- Before the bunch passage electrons are **uniformly distributed** in the chamber and **at rest**


Parameter	Value @ 450 GeV	Value @ 7 TeV	
N (p/b)	$1.3 - 2.3 \times 10^{11}$	$1.3 - 2.3 \times 10^{11}$	
$\varepsilon_{x,y} \left(\mu m \right)$	2.5	2.5	
σ_{z} (m)	0.1	0.075	
B (T, T/m)	0.53, 12	8.2, 187	
V _{400MHz} (MV)	8	16	
N_{el} (e ⁻ /m ³)	$0.3 - 20 \times 10^{12}$	$0.3 - 20 \times 10^{13}$	
N_{segments}	79	31	
N _{MP} (e⁻)	10 ⁵	10 ⁵	
N _{MP} (p)	3 x 10 ⁵	3 x 10 ⁵	
N_kicks	70	31	
Grid zize (m)	0.2e-3	0.07e-3	
Time step (ps)	10	5	

• Simulations at 7 TeV are **numerically more challenging** due to the **smaller beam size** (need for finer grid) and **stronger magnetic fields** (need fro smaller time steps to resolve electron motion)

- Continued validation of our new PyECLOUD-PyHEADTAIL simulation setup
- Over the last months extensive **convergence scans** (especially at 7 TeV) with respect to:
 - The number of kicks
 - The grid size
 - The number of slices
- Each parameter scanned together with electron density (for dipoles and quadrupoles)
- Each **simulation repeated 5 times** to mitigate dependence on initial conditions (seed)

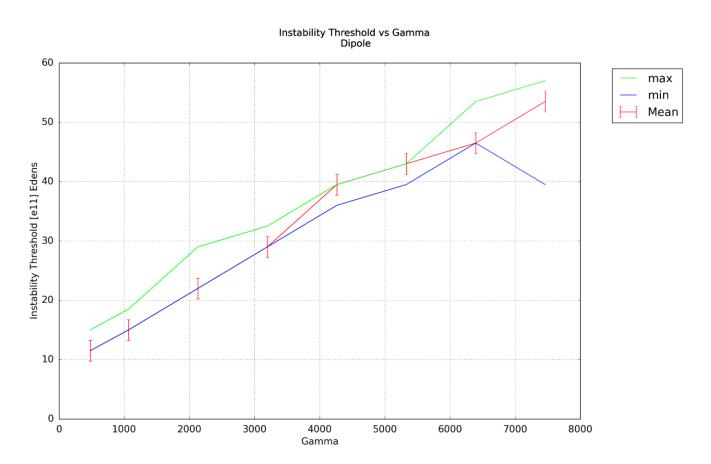
Instability thresholds

• Basically confirmed preliminary results presented at Fermilab:

Arc quadrupoles (~5% of the machine)

	1.3 x 10 ¹¹ ppb	1.8 x 10 ¹¹ ppb	2.3 x 10 ¹¹ ppb
450 GeV	9 x 10 ¹² e ⁻ /m ³	9 x 10 ¹² e ⁻ /m ³	10 x 10 ¹² e ⁻ /m ³
7 TeV	1.2 x 10 ¹⁴ e ⁻ /m ³	1.1 x 10 ¹⁴ e ⁻ /m ³	1.2 x 10 ¹⁴ e ⁻ /m ³

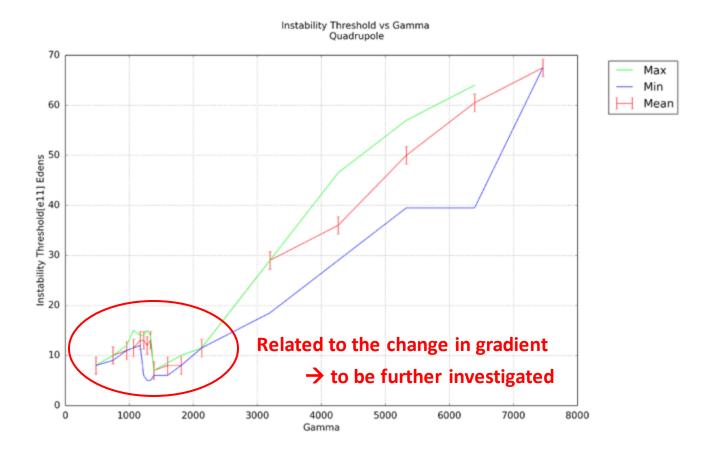
Arc dipoles (~65% of the machine)


	1.3 x 10 ¹¹ ppb	1.8 x 10 ¹¹ ppb	2.3 x 10 ¹¹ ppb
450 GeV	1.2 x 10 ¹² e ⁻ /m ³	1 x 10 ¹² e ⁻ /m ³	1 x 10 ¹² e ⁻ /m ³
7 TeV	8 x 10 ¹² e ⁻ /m ³	8 x 10 ¹² e ⁻ /m ³	9 x 10 ¹² e ⁻ /m ³

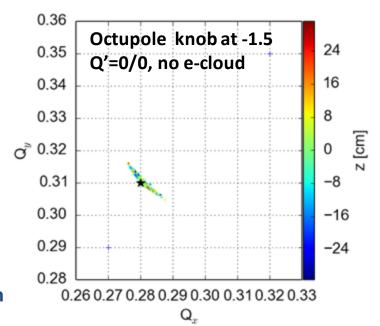
- Dependence on bunch intensity is quite weak
- The threshold e⁻ density for transverse instability increases by one order of magnitude going to 7 TeV → effect of increased beam rigidity

CERN

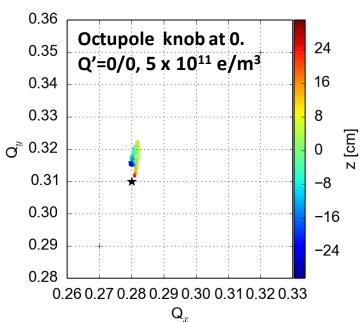
Dependence on beam energy

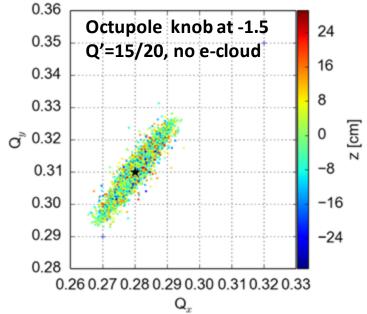

- Started with **simplified case** (easier to spot "suspect" behaviours of the code):
 - Constant bunch length
 - Constant RF voltage
 - Bunch matched do the backet
 - Magnetic fields increasing with energy
- Instability threshold scales linearly with gamma

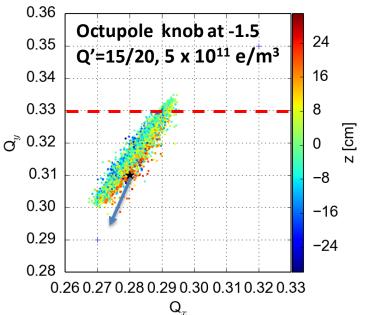
CERN

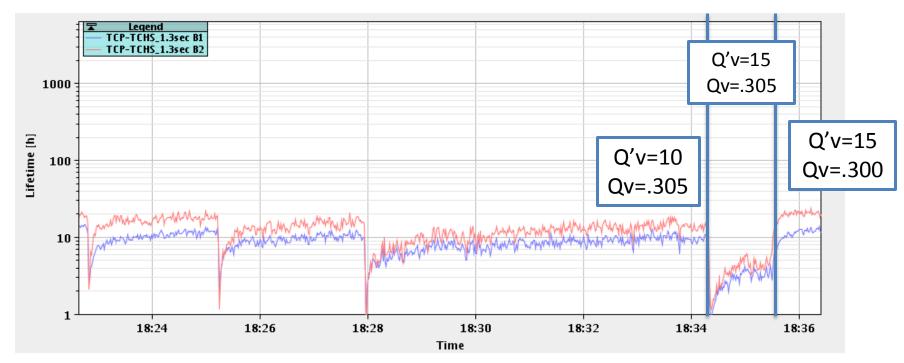

Dependence on beam energy

- Started with **simplified case** (easier to spot "suspect" behaviours of the code):
 - Constant bunch length
 - Constant RF voltage
 - Bunch matched do the backet
 - Magnetic fields increasing with energy
- Instability threshold scales linearly with gamma






Tune footprints with ecloud, Q' and octupoles



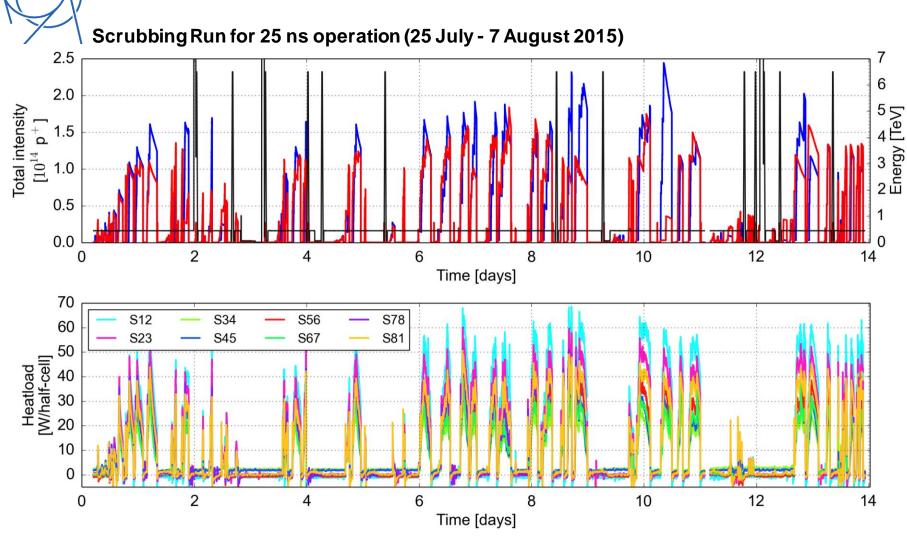
Consistent with recent machine observations:

Losses are on the trailing bunches of the train (as axpected)

For details:

http://indico.cern.ch/event/396577/ http://indico.cern.ch/event/446452/

Update on PyHEADTAIL simulations


For details:

http://indico.cern.ch/event/394530/ http://indico.cern.ch/event/446452/

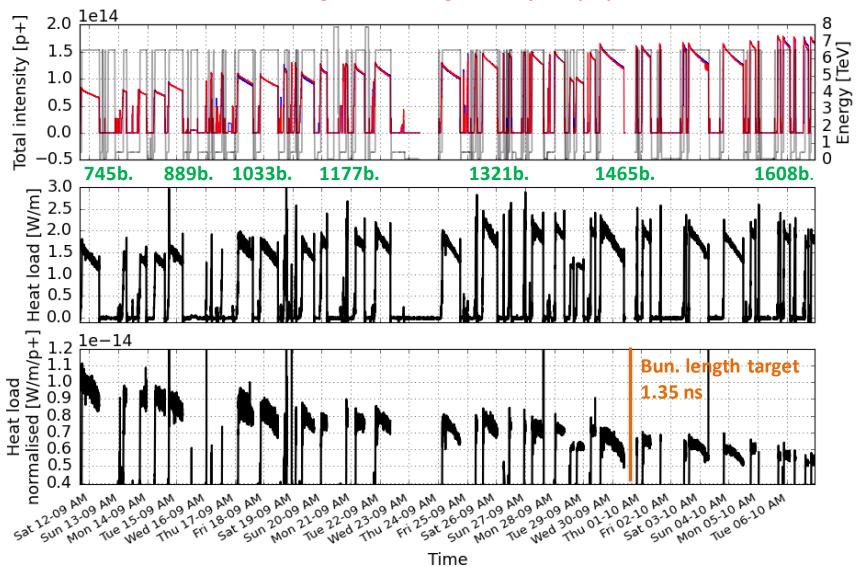
Lessons learned from the 25 ns run so far

For details:

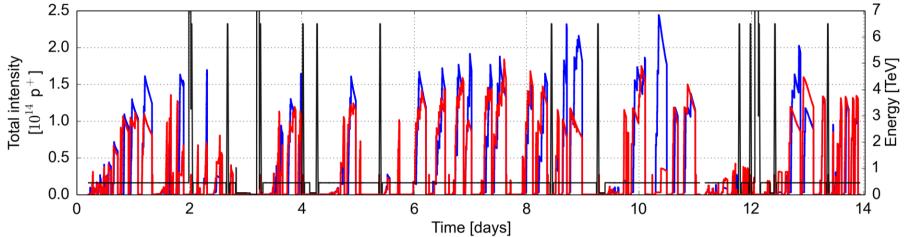
Lessons learnt from experience with 25 ns beam in 2015

Scrubbing accumulated during Run 1 lost completely during the shutdown

CERN

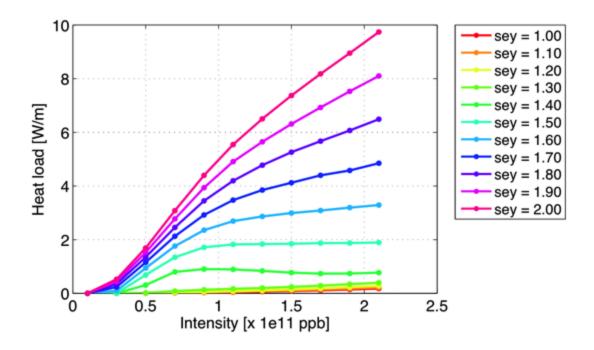

→ **Deconditioning observed** even after the (after running in low e-cloud conditions)

Heat load evolution during the last weeks


After scrubbing e-cloud still observed in the machine

→ but further scrubbing visible during intensity ramp up

Lessons learnt from experience with 25 ns beam in 2015



Scrubbing efficiency relies on our capability to keep injecting and preserve good beam quality:

- Injection speed can be limited by transients on heat loads observed when injecting beam.
 Important improvements from:
 - → Feedforward algorithm on Cryo regulation
 - → Optimization of Cryo Maintain limits on beam screen temperature
- Improved vacuum in MKI region and more robust TDIs would significantly help
- Transverse damper performance is crucial to keep the beam in the LHC (even in presence of intrabunch instabilities)
- Need to run with **high Q' and octupoles** → **Tune optimization** can strongly improve beam lifetime

Dependence on bunch intensity is **quite steep for high values of the SEY** and flattens down when approaching the threshold:

→ cooling capacity important to minimize required scrubbing time

Thanks for your attention!