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Outline

• e-cloud buildup with/without shielding baffle plates
For details:

http://indico.cern.ch/event/396577/
http://indico.cern.ch/event/446452/

• Update on PyHEADTAIL simulations
For details:

http://indico.cern.ch/event/394530/
http://indico.cern.ch/event/446452/

• Lessons learned from the 25 ns run so far
For details:

http://indico.cern.ch/event/446455/

http://indico.cern.ch/event/446452/
http://indico.cern.ch/event/446452/
http://indico.cern.ch/event/394530/
http://indico.cern.ch/event/446452/
http://indico.cern.ch/event/446455/
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LHC beam screen without baffle plateLHC beam screen with baffle plate

e-cloud buildup with/without shielding baffle plates 

• Goal: check the need to shield the pumping holes to avoid multipacting with the cold bore

o Check whether electric shielding provided by the beam screen is already sufficient to 

suppress multipacting

• PyECLOUD had to be modified in order to handle non convex boundaries:

o Electron impact detection and handling

o Boundary condition in the PyPIC space charge module (to continue using Shortley-

Weller refined boundary) 



Simulations results

• Assuming the SEY equal to 1.4, the heat load deposited is almost 0.15 W/m for both cases 

 baffles protect the cold bore from a non regligible heat load 
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Underlying mechanim

file:///.file/id=657136
7.13687216

• At 450GeV B=0.53 T: cyclotron radius does not exceed few micrometers

 Practically Electrons practically move only in vertical

• The kinetic energy of secondary electrons is not larger than 30 eV

 It is enough for them to make few mm per ns

 Electrons can make it to go back into the chamber before the

following bunch passage even without being accelerated by the

beam
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e-cloud instability simulations for the HL-LHC

• We simulated the interaction of a single bunch with the electron cloud in the dipoles 

and in the quadrupoles separately scanning the bunch intensity and the electron density 

• Before the bunch passage electrons are uniformly distributed in the chamber and at rest

Parameter Value @ 450 GeV Value @ 7 TeV

N (p/b) 1.3 – 2.3 x 1011 1.3 – 2.3 x 1011

ex,y (mm) 2.5 2.5

sz (m) 0.1 0. 075

B (T, T/m) 0.53, 12 8.2, 187

V400MHz (MV) 8 16

Nel (e-/m3) 0.3 – 20 x 1012 0.3 – 20 x 1013

Nsegments 79 31

NMP (e-) 105 105

NMP (p) 3 x 105 3 x 105

N_kicks 70 31

Grid zize (m) 0.2e-3 0.07e-3

Time step (ps) 10 5

• Simulations at 7 TeV are numerically more challenging due to the smaller beam size (need for 

finer grid) and stronger magnetic fields (need fro smaller time steps to resolve electron motion) 



Convergence scans

• Continued validation of our new PyECLOUD-PyHEADTAIL simulation setup

• Over the last months extensive convergence scans (especially at 7 TeV) with respect to:

o The number of kicks 

o The grid size 

o The number of slices

• Each parameter scanned together with electron density (for dipoles and quadrupoles)

• Each simulation repeated 5 times to mitigate dependence on initial conditions (seed)



Instability thresholds

1.3 x 1011 ppb 1.8 x 1011 ppb 2.3 x 1011 ppb

450 GeV 1.2 x 1012 e-/m3 1 x 1012 e-/m3 1 x 1012 e-/m3

7 TeV 8 x 1012 e-/m3 8 x 1012 e-/m3 9 x 1012 e-/m3

Arc dipoles 
(~65% of the machine)

1.3 x 1011 ppb 1.8 x 1011 ppb 2.3 x 1011 ppb

450 GeV 9 x 1012 e-/m3 9 x 1012 e-/m3 10 x 1012 e-/m3

7 TeV 1.2 x 1014 e-/m3 1.1 x 1014 e-/m3 1.2 x 1014 e-/m3

Arc quadrupoles 
(~5% of the machine)

• Basically confirmed preliminary results presented at Fermilab:

• Dependence on bunch intensity is quite weak

• The threshold e- density for transverse instability increases by one order of magnitude 

going to 7 TeV  effect of increased beam rigidity



Dependence on beam energy

• Started with simplified case (easier to spot “suspect” behaviours of the code):

o Constant bunch length

o Constant RF voltage

o Bunch matched do the backet

o Magnetic fields increasing with energy

• Instability threshold scales linearly with gamma



Dependence on beam energy

• Started with simplified case (easier to spot “suspect” behaviours of the code):

o Constant bunch length

o Constant RF voltage

o Bunch matched do the backet

o Magnetic fields increasing with energy

• Instability threshold scales linearly with gamma

Related to the change in gradient

 to be further investigated



Tune footprints with ecloud, Q’ and octupoles

Octupole knob at -1.5
Q’=0/0, no e-cloud

Octupole knob at -1.5
Q’=15/20, no e-cloud

Octupole knob at 0.
Q’=0/0, 5 x 1011 e/m3

Octupole knob at -1.5
Q’=15/20, 5 x 1011 e/m3

Nominal bunch 

intensity



Q’v=10
Qv=.305

Q’v=15
Qv=.300

Q’v=15
Qv=.305

Consistent with recent machine observations:

• Losses are on the trailing bunches of the train (as axpected)
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Lessons learnt from experience with 25 ns beam in 2015

Scrubbing Run for 25 ns operation (25 July - 7 August 2015) 

Scrubbing accumulated during Run 1 lost completely during the shutdown

 Deconditioning observed even after the (after running in low e-cloud conditions)



Heat load evolution during the last weeks

1608b.1465b.1321b.1177b.1033b.745b. 889b.

Bun. length target
1.35 ns

After scrubbing e-cloud still observed in the machine

 but further scrubbing visible during intensity ramp up



Lessons learnt from experience with 25 ns beam in 2015

Scrubbing Run for 25 ns operation (25 July - 7 August 2015) 

Scrubbing efficiency relies on our capability to keep injecting and preserve good beam quality: 

• Injection speed can be limited by transients on heat loads observed when injecting beam. 

Important improvements from:

 Feedforward algorithm on Cryo regulation

 Optimization of Cryo Maintain limits on beam screen temperature 

• Improved vacuum in MKI region and more robust TDIs would significantly help

• Transverse damper performance is crucial to keep the beam in the LHC (even in presence of intra-

bunch instabilities)

• Need to run with high Q’ and octupoles  Tune optimization can strongly improve beam lifetime



Scrubbing in the HL-LHC era…

Dependence on bunch intensity is quite steep for high values of the SEY and flattens down 

when approaching the threshold:

 cooling capacity important to minimize required scrubbing time



Thanks for your attention!


