Energy deposition in the Triplet-D1 region (v1.2)

A. Tsinganis, F. Cerutti
EN/STI/EET

With input from: C. Garion, R. Fernandez-Gomez, T. Lefevre, R. De Maria, S. Fartoukh, P. Ferracin, M. Sugano, I. Efthymiopoulos

Acknowledgements: G. Arduini, E. Todesco, T. Nakamoto, P. Fessia

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Outline

• Simulation setup
 • Layout and optics
 • Geometry
• Results for round optics (V/H)
 • Total power
 • Peak power/dose
• Other optics
• Dose minimisation with alternative optics & crossing combinations
• Summary
Simulation setup
Layout and optics

- Element lengths and positions extracted from V1.2 TWISS file
 - Exception: TAS kept at V1.1 position
 - TAS aperture = 60mm
- New magnetic field map for D1
 - Special treatment necessary to remove unphysical spikes at certain boundaries
- Main scenarios studied:
 - Round optics, $\beta^*=15\text{cm}$, crossing $295\mu\text{rad}$
 - 1. Vertical crossing (IP1)
 - 2. Horizontal crossing (IP5)
Geometry upgrades & updates

- 1. Update of various layer thicknesses

- Coil aperture (cold): $R = 7.435\text{cm}$
- 250μm insulation
- 1.5mm liquid He
- 200μm insulation
- 4mm cold bore ($R_{in} = 6.84\text{cm}$)
Geometry upgrades & updates

2. Beam screen design
 - Inermet shielding extended towards the poles in “thin” BS (50% filling factor)
 - Adjustment (1.1mm radial reduction) of dimensions to adapt to change in the defined coil aperture and other layers (insulation etc.)

Q1

- $d_{max} = 16\text{mm}$
- 1.5mm clearance from cold bore
- 99.8mm

Q2 and beyond

- $d_{max} = 6\text{mm}$
- 119.8mm
- 112.4mm
- 50% filling factor
Geometry upgrades & updates

• 3. New FLUKA models of interconnect with circular BPM

BS shielding gap 70.8cm

Q1 → Q2

Q2 → Q3 and beyond

Design provided by R. Fernandez-Gomez, T. Lefevre
Results
Total power for $L=7.5L_0$

<table>
<thead>
<tr>
<th></th>
<th>Round vertical</th>
<th>Round horizontal</th>
<th>RV V1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Magnet cold mass</td>
<td>Beam screen</td>
<td>Magnet cold mass</td>
</tr>
<tr>
<td>Q1A + Q1B</td>
<td>167</td>
<td>251</td>
<td>176</td>
</tr>
<tr>
<td>Q2A + corr.</td>
<td>139</td>
<td>115</td>
<td>128</td>
</tr>
<tr>
<td>Q2B + corr.</td>
<td>170</td>
<td>147</td>
<td>179</td>
</tr>
<tr>
<td>Q3A + Q3B</td>
<td>186</td>
<td>154</td>
<td>161</td>
</tr>
<tr>
<td>CP</td>
<td>86</td>
<td>106</td>
<td>57</td>
</tr>
<tr>
<td>D1</td>
<td>114</td>
<td>108</td>
<td>92</td>
</tr>
<tr>
<td>TOTAL</td>
<td>862</td>
<td>881</td>
<td>793</td>
</tr>
</tbody>
</table>

- Extension of BS shielding towards poles re-balances loads between CM and BS
- Loads in horizontal crossing \sim10% lower with respect to vertical crossing
Peak power density \((L=7.5L_0)\)

- Values quite low overall
- There is an important effect in the IP-faces due to shielding gap in the interconnect, especially in horizontal crossing
Peak dose ($L_{int} = 4000\text{fb}^{-1}$)

Vertical crossing

Horizontal crossing

Energy deposition in the Triplet-D1 region (v1.2) | WP2 Meeting – October 16, 2015 | AT
Peak dose \((L_{int} = 4000 fb^{-1}) \)

- The horizontal case is worse
 - Shielding gap in the interconnect creates a localised problem
Is this consistent with previous results?

• YES
 • An increase in the peak dose in Q2B is expected going from vertical to horizontal crossing
 • A longer gap (from 10 to 50cm) in the BS shielding was shown to lead to significantly higher peak dose values in the IP-faces (especially in Q2B)
 • REMINDER: Gap is now ~71cm

\[L_{int} = 3000 \text{fb}^{-1} \]

See F. Cerutti, 5th PLC Meeting, July 2, 2013
Further studies: flat optics

- Two flat optics scenarios were also studied for both vertical and horizontal crossing
 - 150 μrad half-crossing angle, $\beta^*_x / \beta^*_y = 40 / 10$ cm
 - 210 μrad half-crossing angle, $\beta^*_x / \beta^*_y = 40 / 10$ cm
- Sensitivity of results to changes in bunch length and beam divergence is limited
- On the contrary, the crossing angle plays an important role
 - Lower dose for lower crossing angle
Peak dose minimisation with alternative optics & crossing combinations

In collaboration with S. Fartoukh (BE/ABP)
Peak dose minimisation scenarios

• Different combinations of optics and crossing can reduce peak dose values
• The flexibility of such combinations depends on various constraints e.g.:
 • Possibility of exchange of crossing planes between IP1 and IP5 (HV \rightarrow VH)
 • Possibility of running with the same crossing plane in IP1 and IP5 (HH or VV)
• Four scenarios considered, with decreasing constraints:
 • 1. Baseline scenario: 50% vertical up (V$^+$) / 50% vertical down (V$^-$) in IP1, 100% horizontal (H) in IP5 with round optics
 • 2. Crossing plane exchange between the two IPs: 50% H, 25% V$^+$, 25% V$^-$ with round optics
 • 3. Crossing plane exchange between the two IPs: 50% H, 25% V$^+$, 25% V$^-$ with flat optics (150μrad)
 • 4. No constraints: 50% V$^+$ / 50% V$^-$ with flat optics (150μrad) in both IPs, which is better than 100% H
Peak dose minimisation scenarios

1. Baseline scenario:
 - 50% vertical up (V^+) / 50% vertical down (V^-) in IP1
 - 100% horizontal (H) in IP5 with round optics
 - Important reduction in IP1 (from 35 to 25MGy)
 - **BUT**, we remain exposed to the high peak value in IP5
 - If the local problem is cured, peak values would be below 30MGy.

IP1

Peak dose profile in the inner coils ($L_{int} = 4000 \text{ fb}^{-1}$)

IP5

Peak dose profile in the inner coils ($L_{int} = 4000 \text{ fb}^{-1}$)
Peak dose minimisation scenarios

- 2. Crossing plane exchange between the two IPs
 - 50% H, 25% V^+, 25% V^- with round optics in both IPs

![Graph showing peak dose profile in the inner coils (L_{int} = 4000 fb^{-1})]
Peak dose minimisation scenarios

- 3. Crossing plane exchange between the two IPs
 - 50% H, 25% V⁺, 25% V⁻ with flat optics (150μrad)

![Peak dose profile in the inner coils (L_{int} = 4000 fb⁻¹)](image)
Peak dose minimisation scenarios

- 4. No constraints
 - 50% V^+ / 50% V^- with flat optics (150μrad) in both IPs
Peak dose minimisation scenarios

• Comparison of three mixed scenarios:

- Energy deposition in the Triplet-D1 region

Peak dose profile in the inner coils ($L_{int} = 4000 \, fb^{-1}$)

- Mixed scenario $RV^+\cdot RV^-\cdot RH \ 25:25:50 \ (295 \ \mu rad)$
- Mixed scenario $FV^+\cdot FV^-\cdot FH \ 25:25:50 \ (150 \ \mu rad)$
- Mixed scenario $FV^+\cdot FV^- \ 50:50 \ (150 \ \mu rad)$
Possible improvement

- Octagonal shielded BPM
 - Shielding gap reduction to ~57cm (instead of 71cm with circular BPM)
 - The shorter gap would surely lead to a reduction of peak dose values
 - **BUT** the gap is still quite long (more than the 50cm studied in the past)
 - This solution is not expected to cure the problem
Summary

• Simulation parameters updated to V1.2
• Various geometry updates (magnet aperture, BS designs)
• New models added: interconnects with circular BPM
• Peak dose estimates show challenging localised problem in IP-face of Q2B, especially for horizontal crossing
• Flat optics scenarios show improvements attributable to the lower crossing angle
• Different optics and crossing combinations (depending on hardware options) could significantly reduce peak dose values

• *Study will be extended to the matching section*
Extra slides
D1 magnetic field map

- Unphysical field values at certain boundaries
 - Due to numerical issues in Roxie?
- A routine was written to detect these spikes and replace them with the average of neighbouring values (excluding neighbouring spikes)
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.