

Follow-up of HL-LHC Annual meeting

G. Arduini Collecting points picked-up during the discussion. Thanks to all of the contributors/presents

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Field quality

- Significant reduction (down to 8 σ) of the dynamic aperture with latest error tables provided by WP3.
 - Need to identify the main drivers
 - Effect of beam screen (including shielding) not included yet
 - Definitions and conventions need to be clarified (still some doubts)
- Sensitivity to multipolar corrector settings to be further studied in particular for higher orders where observables for optimization might be nontrivial

Impedance

- Progress with the modellization of the impact of crab cavities on beam stability and on the impedance reduction.
 - The transverse mode at 920 MHz in the DQW design should be reduced for beam stability considerations
- Evaluation of:
 - Triplet BPMs (two beams) → design available
 - Y chamber (two beams)
- Are we evaluating the behaviour of the components installed in common areas w.r.t. two beams?

Heat Loads

 Need to have Tables for the various contributions to heat loads for the various beam screens (in IR1/2/5/8 and in the arcs) for nominal parameters.

	Beam screen type	Synchrotron radiation [W]	Impedance [W] 20/70 K	Luminosity debris [W]	Electron cloud SEY 1.3/1.4 [W]	Comments
	Q1	хх	уу20/уу70	ZZ	Ww1.3/ww1.4	Coating with SEY <1 required
	Q6	хх	уу20/уу70	ZZ	Ww1.3/ww1.4	Coating with SEY <1 required
	Beam screen type	Synchrotron radiation [W/m]	Impedance [W/m] 20/70 K	Debris from beam gas [W/m]	Electron cloud SEY 1.3/1.4 [W/m]	Comments
	Arc dipole	хх	уу20/уу70	ZZ	Ww1.3/ww1.4	ссс
Hie	Arc quad	хх	уу20/уу70	ZZ	Ww1.3/ww1.4	ссс
LHC						

Heat loads

- Can we run at 1.08 ns (2.5 eV.s at 16 MV)
- Should we run at 12 MV as today? Can we do that?
- Is there a minimum bunch length at which we should level to avoid further upgrade of the kickers?

Electron cloud

- Need for baffles behind pumping slots confirmed for the dipoles → need to cross check with the triplets and agree on design with vacuum team (size and number of pumping slots)
 - → implication on pumping speed
 - → Implications on impedance
- Recent beam tests seem to confirm that electron cloud in the dipoles plays a role for stability (and can be suppressed):
 - Can we confirm that we can run above threshold on the main quadrupoles with no issues on stability?
 - Can we infer anything on the role of electron cloud in the triplets/matching sections (although we plan coating)?

Beam screen and Energy deposition

- Great progress in the design of the beam screen but need a technical review to clarify tolerances and contributions to them (particularly critical for Q2/3)/mechanical behaviour during quenches:
 - Straightness
 - Longitudinal and transverse weldings
 - Optimization of the thickness of copper as a balance between quench behaviour and impedance
 - Tungsten shielding plays an important role during quenches
 Iongitudinal segmentation?
 - D1 shielding thickness could be reduced by 1 mm to maintain constant aperture

Beam screen and Energy deposition

- Integrated radiation dose between Q2a and Q2b: mainly due to interruption of the shielding at the interconnects
 → possible new design to be studied allowing increased longitudinal coverage
- Mitigation measures:
 - Operation with constant normalized LRBB separation to reduce the crossing angle at least during he levelling phase → implications on DA
 - Regular swap of the crossing plane → implication on crab cavities
 - VV crossing with regular swap → LRBB compensation

Sensitivity to MCBX settings?

Machine Detector Interface

- TAXS aperture at 60 mm seems to be acceptable from machine/experiment protection considerations
- Issue with flange dimensions to be addressed on CMS side/VAXS and BPM integration on the ATLAS side to be confirmed (end of January?)
- No clear indications that Pile-up (up to 200) and pile-up density are an issue
- Luminous region up to 12-13 cm r.m.s.

longitudinally seems to be acceptable

Beam-beam

- Goal for the emittance growth rate due to CC noise:
 - Should be small as compared to emittance growth due to IBS
 - Tune spread to be considered for estimations of emittance blow-up. We should assume the worst case with LHCb operating at high luminosity (essentially head on).
- Impact on DA of the levelling at constant BBLR
- Margin for crossing angle reduction
- Dynamic $\boldsymbol{\beta}$ beating due to HOBB. To be studied.

Optics measurement and correction

- Is the precision of the tune measurement at 5x10⁻⁵ feasible at all?
 - Requirements on powering configuration for triplet → single main power converter
 - Instrumentation?
 - Can this be relaxed if amplitude information of the BPM can be guaranteed with good accuracy? (1%?). Feasible?
 - Need to update LHC instrumentation specifications?
- b2 uncertainty for the triplet is critical (aim for 1 unit → now at 10 units)
- Correction strategy for triplet field errors with corrector package needs to be tested in LHC

LHCb

- β^* limited to ~2 m with IP shift
- No significant gain to go to levelling beyond 1x10³⁴ cm⁻² s⁻¹. Intermediate scenarios (e.g. 0.5x10³⁴ cm⁻² s⁻¹ B. Schmidt) to be considered
- Beam-beam simulations are required to assess impact on DA and luminosity lifetime (other than burn-off)
- Can we stand 3 IPs with full Head-On Beam Beam Tune Spread? Mitigation measures to reduce the tune spread?

Collimation

 Can we dynamically varying the collimators during β* levelling to minimize impedance at the beginning of the fill when intensity/brightness is higher?

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

