EDM Experimental Searches

Maurits van der Grinten

Rutherford Appleton Laboratory Science & Technology Facilities Council UK

Science & Technology Facilities Council Rutherford Appleton Laboratory

Outline

Physics Motivation

- **EDM & CP/T** violation
- **EDM** in physics models
- restraints by experiments
- Experimental techniques for nEDM measurements
 - spin precession frequency & EDM
 - Ramsey Resonance techniques
 - sensitivities
- Experiments
 - > PSI
 - > ILL/ESS
 - > SNS
 - ≻ ..
- Conclusion/Summary

NExT Nov15

EDM CP violation

+

- **Electric Dipole Moment:**
- electrically neutral or charged particles
- If there is a charge distribution:

EDM CP violation

The Electric Dipole Moment: d_n $d_n \neq 0 \implies P \text{ and } T \text{ violation}$ *CP* violation observed in K decay, B mesons $\rightarrow d_n \neq 0$

CP violation, interest

- The study of CP violation to further:
 - Understanding the fundamental laws of physics
 - Understanding the baryon asymmetry of the cosmos
- EDM is a particularly promising laboratory for CP violation
 - The Standard Model contribution is very small
 - Contributions from new physics tend not to be

NExT Nov15

ATTER

EDM: systems at hand

$d_N < 2.9 \times 10^{-26} ecm$			
Strong	$d_{\scriptscriptstyle N} \sim \overline{ heta} \cdot 2 \times 10^{-16}$ ecm	$\overline{ heta}$ < 10 ⁻⁹	Strong CP problem
Electroweak	$d_{\scriptscriptstyle N} \propto \ldots c_1 s_1^2 c_2 s_2 c_3 s_3 \sin \delta_{\scriptscriptstyle CKM}$	$d_{\scriptscriptstyle N}$ ~ 10^{-32} ecm	No problem but what about baryon asymmetry?
Supersymmetric _d	$_{N} \sim 2 \left(\frac{100 GeV}{\widetilde{m}}\right)^{2} \sin \Phi_{A,B} \cdot 10^{-23} \ ecm$	$\sin \Phi_{A,B} \sim 10^{-2}$ $\widetilde{m} \sim TeV$	Supersymmetric CP problem 🔅

NExT Nov15

EDM models - experiment

nEDM: spin frequency

NExT Nov15

The difference is proportional to d_n and E:

$$\begin{array}{l} v_{\uparrow\uparrow} = \mathsf{E}_{\uparrow\uparrow}/\mathsf{h} = [-2B_0\mu_{\mathsf{n}} - 2Ed_n]/\mathsf{h} \\ v_{\uparrow\downarrow} = \mathsf{E}_{\uparrow\downarrow}/\mathsf{h} = [-2B_0\mu_{\mathsf{n}} + 2Ed_n]/\mathsf{h} \end{array}$$

$$h(v_{\uparrow\uparrow} - v_{\uparrow\downarrow}) = 4E d_n$$

if *B*₀ has not changed

Need a magnetometer!

NExT Nov15

nEDM: Ramsey Resonance techniques

"Spin up" 1. neutron... Apply $\pi/2$ 2. spin flip pulse... Free 3. precession ••• Second $\pi/2$ 4. spin flip pulse.

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET \sqrt{N}}$$

α: polarisation product *E*: electric field *T*: observation time *N*: number of neutrons

Ramsey Resonance Curve

M vd Grinten

NExT Nov15

nEDM: Ramsey Resonance techniques

Uncertainty in measurement of energy E; Uncertainty in time (interaction energy between E_{el} and d_n) (*i.e.* width of observation time)

Uncertainty in measurement of E directly related to uncertainty in d_n

$$\begin{aligned}
E &= 2d_n E_{el} \Rightarrow d_n = \frac{E}{2E_{el}} \\
\sigma(d_n) &= \frac{\hbar}{2\alpha E_{el}} T \sqrt{N}
\end{aligned}$$

M vd Grinten

For *N* measurements with polarisation product $\alpha = P^2$:

EDM: experiments

neutron EDM Experiments

NExT Nov15

- completed room temperature EDM experiment on UCN source
- cryogenic EDM R&D on cold neutron beam

NExT Nov15

H53 beam line

PF2 beam line

M vd Grinten

NExT Nov15

nEDM: cryogenic R&D

nEDM: cryoEDM

Superthermal UCN source

Shields & Ramsey cells coupled to UCN source

8

nEDM: PSI

Paul Scherrer Institut

NExT Nov15

5K sD₂ UCN source

10

g

 use of upgraded RAL/Sussex/ILL apparatus taking data expect reaching our limit next year
 construct new apparatus n2EDM should probe @ (10⁻²⁷ e·cm) by 2020

The UCN source at PSI

- 1. PSI proton beam, up to 8 s pulses
- 2. spallation target (Pb)
- 3. D₂O vessel
- 4. 30 dm^3 solid D₂ moderator
- 5. $\sim 2 \text{ m}^3$ source UCN storage vessel, coating: diamond-like carbon (DLC)
- 6. source UCN storage vessel shutter
- 7. UCN guides towards experiments

- ~ 8 m long

- coated with NiMo (85/15)
- 8. He and D_2 supply lines
- 9. thermal shield
- 10. vacuum tank

Original design goal: 1000 UCN/cm³ in a typical external storage volume.

Dieter Ries (nEDM2014)

PSI UCN source status

November 4, 2014 2 / 22

nEDM: PSI

Paul Scherrer Institut

- **5K sD₂ UCN source**
- use of upgraded RAL/Sussex/ILL apparatus taking data expect reaching our limit next year
- construct new apparatus n2EDM

nEDM: PSI

Paul Scherrer Institut

- **5K sD₂ UCN source**
- use of upgraded RAL/Sussex/ILL apparatus taking data expect reaching our limit next year
- construct new apparatus n2EDM should probe @ (10⁻²⁷ e·cm) by 2020

Increase UCN numbers:

- Double storage cell
- Improved geometry

NExT Nov15

Cs Cs

UCN guide

UCN guide

rail / support

Call

3He

Hq

nEDM: SNS

nEDM: SNS

- Key Changes in Alternatives Analysis:
 - Central Detector System & Magnets mounted Vertically
 - Separate functions into modules (Cells/HV, Magnet, ³He)
 - Use Magnetically Shielded House rather than custom "skin"

Funding & Schedule for nEDM

- 4-yr NSF proposal for CCD approved ~6.5M\$
- Anticipate 4-yr DOE Funding for CCD ~7M\$
- Continuation of external Technical Review Committee
- Need additional ~ 25M\$ after CCD
- Could complete construction of more conventional systems after additional ~ 2 yrs
- Commissioning underway by 2019-2020

The TUM EDM experiment

- ,Conventional' Ramsey experiment with UCN stored at room temperature
- Double chamber with co-magnetometers
- ¹⁹⁹Hg, Cs, SQUID magnetometers
- Portable setup, including magnetic shielding (demonstrated!)
- Extremely modular design
- Ready for UCN next summer

Magnetic shield

Possible room temperature apparatus:

Cryogenic chamber option:

Figure 4: Left: Cut through a possible EDM measurement apparatus with UCN storage volumes at room temperature, placed inside a magnetically shielded laboratory. The conceptual layout of the UCN chambers is comparable to the experiments planned or built at Gatchina, PSI, TUM. Right: A possible cryogenic chamber as upgrade for enhancing the physics reach (design by M. v.d. Grinten et al.)

NExT Nov15

Science & Technology Facilities Council Rutherford Applet

Challenges of the world-wide experimental search for the electric dipole moment of the neutron

PSI:

2-6 November 2014 Congressi Stefano Franscini Europe/Zurich timezone

- Taking data with sensitivity comparable to RAL/Sussex RT expt.
- Aim to upgrade to "n2EDM" with 8 fold increase in sensitivity after 2020.

SNS

- Major overhaul in design
- Aim to be commissioning in 2020
- Sensitivity O(10⁻²⁸ ecm ?)

TUM

- Key parts of equipment (near)ready
- No UCN
- Staged planning ILL/TUM O(10⁻ ²⁷-10⁻²⁸ ecm)

LANL

- UCN Source operating, upgrade sought
- "Support" EDM experiment O(10⁻²⁷)

PNPI

- RT result comparable to RAL/Sussex RT expt
- Various future prospects ILL/Russia O(10⁻²⁷)

TRIUMF

- TRIUMF beam being constructed
- UCN source to be shipped from Osaka
- EDM apparatus to be built
- EDM experiment O(10⁻²⁷) by 2020

M vd Grinten

NExT Nov15

- nEDM searches probing beyond SM
- World wide interest in pursuing these
- Current generation of experiments will push limits further
- Next generation experiment (2020+) put EDM discovery within reach?

NExT Nov15

The END

NExT Nov15

EDM: experiments

NExT Nov15