

CMS : an introduction

Aiming at newcomers

CMS detector: why is it like it is ?
How does CMS functions

First things first

- Most important for the functioning of the experiment: our secretariat

Nicoletta Barzaghini
Guylaine Pachoud

A bit of history

Aachen 1990:

- Concept of a compact detector based on high B field superconducting solenoid Evian 1992
- Conceptual Design

Letter of Intent, October 1992 [CERN/LHCC 92-3]
Technical Proposal, Dec 1994 [CERN/LHCC 94-38]
Memorandum of Understanding (MoU) 1998
Technical Design Reports (available from the CMS secretariat)

- Detectors 1997-98;
- Lvl-1 Trigger: 2000;
- DAQ/HLT: 2002
- Computing \& Physics TDR: 2005-06

2008: First data taking: LHC Incident. Restart in 2009.
2010-2013 Data taking [Run I]:

- 7 TeV (5fb-1)
- 8 TeV (20 fb-1)
- Heavy Ion: Pb-Pb and p-PB

pp physics objectives

- The LHC primary goa
- Higgs decay in $\gamma \gamma$: co resolution <0.5\%

 (reconstrucuection of mass of Z^{\prime}) translates into requirement on m -hit positition resolution and chamiber alignment
- \% momèntum resolution at low mementa
- Efficience ${ }^{2}$ at separating vertices close ${ }^{20 \%}$ o beam line (pileup,
 alignmegit

4000

110
$m_{\gamma}(\mathrm{GeV})$

The LHC constraints

Bunch separation 25 ns : a challenge for the readout electronics

- Need of fast electronics to avoid piling up signals from one bunch to the next
- Need of bunch identification (even a trigger level)
 Ultimate luminosity $210^{34} \mathrm{~cm}^{2} / \mathrm{s}: \sim 40$ interactions per crossing
- Need highly granular detector to mitigate 'channel' pileup: many channels

Radiation damage: the high rate hadron production in LHC

 requires development of radiation hard detector/electronics- Forward calorimeters elements will integrate in excess of 10^{16} neutron over 10 years of LHC operation
- Forward trackers will integrate in excess of 10^{16}
${ }_{17}$ charged particles over the operation of LHACporesi

A pp general purpose detector

First thing first: tracking: Benchmark 10\% P resolution for muons of 1 TeV (in order to detect $\left.Z^{\prime}\right)$
Choice of magnet configuration determines the geometry of the experiment: CMS

- Measurement of p in tracker and B return flux; Iron-core solenoid.
Properties:
- Can use vertex to constrain track
- Large B and large dL

CMS solenoid: an engineering achievement

$\mathrm{B}=4$ tesla (magnetic energy stored : 2.7 GJ !!)
$\mathrm{B}=\mu_{0} \mathrm{nl}$; @2168 turns/m hence 20 KA
Challenge: Superconducting cable structure to withstand the magnetic forces

Tracker

- Resolution goals:
$-\Delta \mathrm{p}_{\mathrm{T}} / \mathrm{p}_{\mathrm{T}} \sim 0.1 \mathrm{p}_{\mathrm{T}}[\mathrm{TeV}]$
- Good resolution for narrow Signal ($\mathrm{H} \rightarrow 4 \mu$)
- Match calo resolution / Calo calibration (W $\rightarrow \mathrm{ev}$)
- ..and good isolation capability (2 particle separation etc.)
- CMS solution: 10 Si Strip (4 double) layers + 3 Si pixel layers/fwd disks (added after initial proposal)

Tracker

Outer radius: 110 cm Length $=270 \mathrm{~cm}$ B=4Tesla On average 12 hits per track Hit resol: pitch/V12

$$
\frac{\Delta p}{p} \approx 0.12\left(\frac{p i t c h}{100 \mu m}\right)^{1}\left(\frac{1.1 m}{L}\right)^{2}\left(\frac{4 T}{B}\right)^{1}\left(\frac{p}{1 T e v}\right)
$$

Pitch ~100 $\mu \mathrm{m}$
66 Million pixels, 10 million strips: low occupancy at ultimate Lumi Run at $<-10 \div$ C for rad hardness (>100 time better than at 25으)

ECAL

- Benchmark: $\mathrm{H} \rightarrow \gamma \gamma . \mathrm{S} / \mathrm{N}$ determined by calo resolution (Higgs width very narrow and QCD background 2 order of magnitude larger)
- CMS choice : Crystal calorimeter

Properties of some crystals

	X_{0} $(\mathrm{~cm})$	R_{M} $(\mathrm{~cm})$	Light Yield Gammas/MeV	Peak (nm)	Decay (ns)
BaF_{2}	2.06	3.4	2000 6500	210 310	0.6 620
CeF_{3}	1.68	2.6	2000	300 340	5 20
PbWO_{4}	0.89	2.2	$250!$	440	$5-15$

76000 Crystals
 Need of new
 Photodetector (B-Field)

Avalanche Photo
Detector (APDs)

HCAL

- HCAL requirement:
- Jet energy resolution:
limited by jet algorithm, fragmentation, magnetic field and pileup at high luminosity . At high momentum need fine lateral segmentation as jets are collimated.
- Missing transverse energy resolution (SUSY searches)
Forward coverage to $|\eta|<5$ Hermeticity - minimize cracks and dead areas Absence of tails in energy distribution: more important that a low value in the stochastic term
- Good forward coverage required to tag processes from vector-boson fusion

HCAL

$$
\frac{\sigma_{E}}{E}(\%) \sim \frac{100-150 \%}{\sqrt{E}}
$$

Tower size: $\Delta \eta \times \Delta \varphi=0.087 \times 0.087$ This is the basic trigger unit

Muons

- Performance requirements
- L1 trigger: very high rate from Real muons (semileptonic decays of b, c). Need to keep p_{T} cut as low as possible ($\sim 5 \mathrm{GeV}$)
- P_{T} Resolution: need very high Bde for high momentum muons and good chamber hit resolution ($\sim 100 \mu \mathrm{~m}$).
At low momentum Si tracking is better
- Charge mis-id $\sim 1 \%$ at 1 TeV

Muons

12 ktons of iron absorber and B-field flux return

Bending in iron + muon tracking: trigger info; and link with main tracker Sophisticated alignment system

Particle radius in B field

When s small (ie.
Relatively high Pt)

Note about CMS μ measurement

$P_{t} \mu 0.3 \times B \times r$

Where ℓ is the 'cord' length of the track in the B field and S the sagitta
In CMS the tracker ends at 1.1 m radius while the first layer of the DT is just outside the coil (i.e. a track integrates constant B up to the inner edge of the solenoid i.e. ~3 m)

BRIL: caring about the Beam

Covering anything related to interfacing CMS to the LHC

Radiation
 Simulation

Beam Halo Monito

A new project :CTPPS

- We have signed a MOU with TOTEM to create the Totem CMS PPS project (PM: Joao Varela)
- Roman pots (new or re-engineered) moved 147 m to 220 region; housing pixel tracking + fast timing detectors
- Measure $\gamma \gamma \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$
- Quartic gauge boson coupling WW $\gamma \gamma$ sensitivity to anomalous couplings larger than at LEP, or Tevatron
- Also search for SM forbidden $\mathrm{ZZ} \gamma \gamma, \gamma \gamma \gamma \gamma$ couplings

LHC used as a "tagged" photon-photon collider at $\sqrt{ }$ s(@©) larger than the ones explored n+ LERGluon-jet factory, with very little quark-jet contamination

P P collisions at LHC

LHC and lumi : a digression

A few definitions of quantities you will hear mentioned often

Transverse Emittance (ε) can be defined as the smallest opening you can squeeze the beam through, and can also be considered as a measurement of the parallelism of a beam.

The amplitude function, β, is determined by the accelerator magnet configuration (basically, the quadrupole magnet arrangement) and powering. When expressed in terms of σ (cross-sectional size of the bunch) and the transverse emittance, the amplitude function β becomes $\beta=\pi \cdot \sigma^{2} / \varepsilon$
β^{*} is referred as the distance from the focus point that the beam width is twice as wide as the focus point
$L=f \cdot N_{1} N_{2} /\left(4 \pi \sigma_{x} \sigma_{y}\right)$
$\mathrm{L}=\mathrm{f} \cdot \mathrm{N}_{1} \mathrm{~N}_{2} /\left(4 \cdot \varepsilon \cdot \beta^{*}\right)$
lumi $=210^{34} \mathrm{~cm}^{2} / \mathrm{s}$ defined by: lumi $=710^{33} \mathrm{~cm}^{2} / \mathrm{s}$
$\mathrm{f}=2010^{6} \mathrm{~Hz}$
$\mathrm{~N}<1.710^{11} \mathrm{p} / \mathrm{bunch}$
$\varepsilon_{\mathrm{n}}=1,75 \mu \mathrm{~m}$
$\beta^{*}=0.60 \mathrm{~m}$

At design time ultimate
$\mathrm{f}=4010^{6} \mathrm{~Hz}$
$\mathrm{N}<1.310^{11}$ p/bunch
$\varepsilon_{\mathrm{n}}=3,75 \mu \mathrm{~m}$
$\beta^{*}=0.55 \mathrm{~m}$

Lumi: how to measure

$$
\mathrm{dR} / \mathrm{dt}=\mathrm{L} \sigma
$$

Where $\mathrm{dR} / \mathrm{dt}$ is the rate of production of a pocess which has cross section σ The luminosity L quantifies the performance of the collider in this respect (units $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$)
In practice if σ_{x} and σ_{y} are respectively the transverse areas of the beam interaction region we use the equivalent formula to measure the Luminosity. The areas of the beam are obtained by scanning the two beams and measuring the rate of collisions while the number of protons in the bunches is measured by dedicated devices of the accelerator

$$
L=f \cdot \underset{\text { CMS induction, T. Camportesi }}{N_{1}} N_{2} /\left(4 \pi \sigma_{x} \sigma_{j}\right)
$$

Beams at CERN

Most of the CERN accelerator complex is involved in LHC operation: the efficiency for having beam (35% in 2012) is actually VERY good

LHC operation

Data detection and data filtering

Towards physics: CMS triggers
 LHC $\quad \sqrt{s}=14 \mathrm{TeV} \quad \mathrm{L}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad$ rate

At LHC the collision rate is $20-$ 40 MHz
The Event size <1 Mbyte

Band width limit ~ 200 GB \rightarrow Mass storage rate ~300-500 Hz

First step in 'analysis' is triggéю

Space \& time constraints

- LHC has ~3600 bunches (2835 filled) Distributed over 27 Km
-Distance between bunches: $27 \mathrm{~km} / 3600=7.5 \mathrm{~m}$
- Distance between bunches in time: $7.5 \mathrm{~m} / \mathrm{c}=\mathbf{2 5 n s}$ (bx)
- Apparatus dimensions 30 m -> 5 bx

~30 m, c $=3 \mathrm{~ns} / \mathrm{m}$

Event signals kinematic

Events signal handling

TIME

Trigger levels

The trigger is a function of :

Since the detector data are not all promptly available and the function is highly complex, $\mathrm{T}(. .$.$) is evaluated by successive$ approximations called :

TRIGGER LEVELS

(possibly with zero dead time)

On-line requirements
Collision rate
Event size
Level-1 Trigger input
40 MHz
1 Mbyte
40 MHz
Level-2 Trigger input
100 kHz
Mass storage rate
~100 Hz
Online rejection 99.999\%
CMS inducti System dead time
~ \%

DAQ

DAQ design issues

Data network bandwidth (EVB)
$\sim \mathrm{Tb} / \mathrm{s}$
Computing power (HLT)
Computing cores
~ 10 Tflop

Local storage
~ 300 TB

Minimize custom design
Exploit data communication and computing technologies
DAQ staging by modular design (scaling)

Event reconstruction

Particle flow

Why particle flow?

- Calorimeter jet:
$-E=E_{\text {HCAL }}+\mathrm{E}_{\mathrm{ECAL}}$
- $\sigma(\mathrm{E}) \sim$ calo resolution to hadron energy: 120 \% / VE
- direction biased $(B=3.8 \mathrm{~T})$
- Particle flow jet:
- 65\% charged hadrons
- $\sigma(\mathrm{pT}) / \mathrm{pT}^{\sim} 1 \%$
- direction measured at vertex
- 25\% photons
- $\sigma(\mathrm{E}) / \mathrm{E} \sim 1 \% / \mathrm{VE}$
- good direction resolution
- 10\% neutral hadrons
- $\sigma(\mathrm{E}) / \mathrm{E} \sim 120$ \% / VE
- Need to resolve the energy deposits from the neutral particles...

CMS

187 Institutes from 43 Countries
>4000 members (~ 2200 signing CMS papers)
papers are signed by PhDs contributing M\&O A (support for the operation), students, emeritus and ex-members for a limited period after they leave CMS
$\sim 17 \%$ of CMS researchers are females
The Collaboration Board is the CMS 'parliament': each institutes with at least 3 PhDs elects the Spokesperson and the CB Chair.

CMS : age distribution

Top 10 funding agencies:
United States (1191, 30\%)
Italy (416, 10\%)
Germany (320, 8\%)
CERN (281, 7\%)
Russian Federation (191, 4.8\%
France (162, 4.1\%)
United Kingdom (146, 3.7\%)
Belgium (135, 3.4\%)
India (106, 2.7\%)
Switzerland (85, 2.1\%)

CMS

How do we function?

The CMS Collaboration is led by the Spokesperson who is the Chairperson of the Management Board and the Executive Board and is responsible for the scientific and technical direction of the experiment, following the policies agreed by the Collaboration Board. The Spokesperson is the principal representative of CMS in interactions with CERN and its committees, with the wider physics community and with the general public. The Spokesperson is elected by the Collaboration Board.

- CMS activities are divided into areas with co-coordinators for each area
- CMS subsystems have each a Subsystem manager (aka Project Manager, PM)
- The Coordinators and PM meet each Tuesday at 13:00 in the Executive Board chaired by the SP; the EB is responsible day to day tactical and technical operation of CMS.
- The Management Board , chaired by the SP, has the same composition as the EB plus representatives of the major regions/countries of CMS, the former SP and Tech. Coord., the resource manager, various chairs of CB committees and a set of SP advisors chosen by the SP. The MB is responsible n is responsible for directing the CMS experiment and for drawing up policy. The MB meets typically 8-10 times per year.
- The CMS Collaboration Board (collecting representatives of each institute participating in CMS) is the governing body of the experiment and makes/endorses all major decisions within the Collaboration. The CB meets during the CMS. Physics and Upgrade weeks. In particular the CB elects the SP and the Chair of the CB which is invited in every CMS committees.

levelling

Nominal performance: 5×10^{34}

Ultimate performance:same beam, leveling at $7.5^{1} 10^{34}$ (PU 200 in average)

CMS phase 2 Upgrade for HI-Lumi-LHC

Technical Proposal: Submitted for approval to the last LHC Committee

CERN-LHCC-2015-010 https://cds.cern.ch/record/2020886

CERN European Organization for Nuclear Research
Organisation européenne pour la recherche nucléaire

The Compact Muon Solenoid Phase II Upgrade Technical proposal

CMS upgrade for Phase 2

Summary of the CMS upgrades for Phase-II

Trigger/HLT/DAQ

- Track information at L1-Trigger
- L1-Trigger: $12.5 \mu \mathrm{~s}$ latency - output 750 kHz
- HLT output $=7.5 \mathrm{kHz}$

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperature (8°)

Muon systems

- Replace DT \& CSC FE/BE electronics
Complete RPC coverage in region $1.5<\eta<2.4$
- Muon tagging $2.4<\eta<3$

Replace Endcap Calorimeters

- Rad. tolerant - high granularity
- 3D capability

> Replace Tracker

- Rad. tolerant - high granularity - significantly less material
- 40 MHz selective readout ($\mathrm{Pt} \geq 2 \mathrm{GeV}$) in Outer Tracker for L1-Trigger
- Extend coverage to $\eta=3.8$

Welcome to CMS

- The experiment founding ideas date back > 20 years.
- The CMS community is continually growing: we have gone through generations of physicists and count on you to help continuing our successes
- We are facing today one of the most challenging periods of our experiment:
- we are closing the very exciting first period of data taking, will have around 500 papers crowned by the Higgs discovery
- We are excited preparing to exploit a new Energy domain in RUN2
- After the approval of the HL LHC program we are engaged in preparing our upgrade and designing the CMS of the future
- It is a moment of unique opportunities in the life of a High energy Physicist: you are fortunate!
- WELCOME to the team!

