DS@QLHC 2015 WORKSHOP

TMVA TUTORIAL — HELGE V0SS

General remarks on the computer exercise using TMVA

Get the exercises from:
wget http://hvoss.home.cern.ch/hvoss/DSLHC2015TMVAExercises.tgz
tar -zxvf DSLHC2015TMVAExercises.tgz
cd DSLHC2015TMVAExercises/

In ROOT6 (unlike ROOTS5) all TMVA GUISs, plotting macros are part of the ROOT
libraries. There is no need to copy files like TMVAGui.C and alike in the working direc-
tory or macro path anymore. If you are using ROOT5 you might still get away with it by
creating a .rootrc file in the working directory which should look like:

Unix.*.Root.MacroPath: .:$(ROOTSYS) /tmva/test : $ (ROOTSYS) /macros
Unix.*.Root.DynamicPath: .:$(RO0OTSYS)/1ib

AND uncommenting the line
// else gROOT->ProcessLine(".L TMVAGui.C"); TMVAGui(outfileName);
in all the example scripts/macros.

In every root6 installation you find a couple of example scripts that demonstrate the
usage of TMVA in  $(RO0OTSYS) /tutorials/tmva. I personally find them too overloaded
because they allow the choice of many different classifiers and many different example
configurations to be chosen simply via a command line argument of the script. The scripts
used in this tutorial on the other hand only contain the essentials and therefore need to be
‘edited’ in order to select/deselect classifiers.

1 Generate toy MonteCarlo events for this exercise

Please execute the program generator

cd ~/DSLHC2015TMVAExercises/MonteCarlo/
make

./RunMonteCarlo

which will create a root tree with MC events (MonteCarlo/MonteCarloEvents8D.root)
used in the tutorial.



2 Understanding your variables

The first step in any event selection is to collect and study the discriminating variables.
Have a look root Trees in MonteCarlo/MonteCarloEvents8D.root, plot the variables com-
pare signal and background distributions. This task is facilitated (to some extent) in TMVA
as it provides plots of the variables with signal and background overlayed.

Look at TMVAClassificationPlot.C. It provides the basics of how TMVA is used
which can be summarized in a few steps:

e instatiation of the TMVA::Factory
TMVA: :Factory *factory = new TMVA::Factory( "TMVA", "TMVAoutput.root","");

e telling the factory which variables to be used
factory->AddVariable( "var0", "Variable 0", "units", ’F’ );

e telling the factory which event trees to use
factory->AddSignalTree ( signalTree , optionalEventWeightFactor );

e telling the factory about how to use the events for the training/testing
factory->PrepareTrainingAndTestTree( "","", "nTrain_Signal=0:nTrain_Background=0:S

e telling the factory which classifiers (methods) are used and what their configuration
values are. e.g.:
factory->BookMethod( TMVA::Types: :kBDT, "BDTG","'!H:!V:BoostType=Grad");

e train/test/evaluate
factory->TrainAllMethods () ;
factory->TestAl1lMethods () ;
factory->EvaluateAllMethods();

In addition, you can specify individual event weight if that’s what is given by your
Monte Carlo generator (or sWeight algorithm or whatever) using one of the three following
ways to do so:

factory->SetSignalWeightExpression ("weightlxweight2") ;
factory->SetBackgroundWeightExpression("weightl*weight2");
factory->SetBackgroundWeightExpression( "weight" );

where weight1, weight2 and weight are examples of how the variable that carries the
event weights is called in your root tree.

Now, run the script: root -1 TMVAClassification.C
and look at the GUI that pops up. The top most buttons are used to inspect the vari-
ables and their correlations. The linear correlations are displayed as the correlation ma-
trix, the “non-linear correlations” (interactions) can be looked at by studying the vari-
ous 2D scatter plots. Please also look at MonteCarlo/Log8D.png which simply plots the
2D scatter plots as an overlapp between signal and background. (note: sometimes it



is helpfull to have ’less events’ in these plots as otherwise, the plot is totally overshad-
owed by whatever (signal or background) is ploted last. Compare MonteCarlo/Log8D.png
MonteCarlo/Log8D_5000events.png
Look at the log printout of TMVA. Rather than just looking at possible separation

power between signal and background of the individual variables, the printout also contains
the calculated separation between signal and background for the individual variables. Look
for:

—--— IdTransformation et

--- IdTransformation : Rank : Variable : Separation

-—— IdTransformation B Sttt

Which variables are the most promising 2 variables according to this printout?

The separation of the individual variables obviously does not take into account and
separation power of the variables that is only visible/obtainable when treating them
correlated. Which 2 variables look most powerful from the 2D scatter plots?

Are these variables 'uncorrelated’? What does the correlation matrix say 7

3 Train a classifier

Run a linear classifier (LD) on these two variable pairings (varl:var2) and (var0O:varl).

To do so, please comment out in the macro

TMVAClassification.C

all factory->AddVariable(..) statments, appart from the two for the variables

varl and var2 or varQ and varl. Then add the classifier by calling
factory->BookMethod( TMVA::Types::kLD, "LD", "H:IV:" );

(just before the call to "TrainAllMethods()’)

the first argument in BookMethod specifies the classifier type. The second is a 'unique’ name that

you need to give to any classifier you book. It is the one that will be displayed for that partic-

ular classifier but has no meaning by itself. The same name (in addition to the name given to

the factory) will also be used to name the 'weight file’; in which the parameters of the trained

classifier are stored. The third argument is a string which communicates the various configura-

tion options for the classifiers. For a full list of available options for each classifier please consult:
http://tmva.sourceforge.net/optionRef.html

Note: You might want to re-name the name given to the factory e.g.

TMVA: :Factory *factory = new TMVA: :Factory( "TMVA_VariVsVar2", "TMVAoutput.root",""); .

The name (first argument) is taken as part of the 'weight file names’ and changing this name allows

you not to overwrite the training results for the two different variable pariings.

e Which 2 variable pairs gives better performance.



e Now run a boosted decision tree (default settings) on these two variable parings.
Which pariing is now better? Guess why ?
factory->BookMethod( TMVA::Types::kBDT, "BDT", "!H:!V");

4 Tune the classifiers configuration parameters

The default parameters are far from optimal and ALLWAYS need to be adjusted. The
performance of the BDT from the previous example can still be increased substantially.
Let’s do that first for just using the 2 variables 'var0 and varl’.

The most important parametes for the BDT's are:

e MinNodeSize:
The minimum fraction of the event sample (e.g. 2%) requested at least in any leaf

node

e MaxDepth:

The maximum tree depth (depends on the interaction of variables. Typically some-
hwere between 2 and 5.

e AdaBoostBeta:
Something like the ’learning rate’ (typically somewhere between 0.01 and 0.5)

o NTrees:

The number of boost steps. (just needs to be large enough. Too large mainly costs
time (which is important, too)

e BoostType:

AdaBoost or the somewhat more powerfull ‘Gradient Boost’. For the latter, the
role of AdaBoostBeta is replaced by the ¢ ‘Shrinkage’’ parameter

“Play” with those parametes until you've reached a performance of at least:

--- Factory
--- Factory
--- Factory
--- Factory
--- Factory
--- Factory
--- Factory

: Testing efficiency compared to training efficiency (overtraining check)

: MVA Signal efficiency: from test sample (from training sample)
: Method: ©B=0.01 ©B=0.10 ©B=0.30
: BDTTuned : 0.092 (0.107) 0.440 (0.472) 0.825 (0.844)

: BDTDefault : 0.050 (0.072) 0.378 (0.441) 0.811 (0.830)

The above lines are found in the log-printout. They give the signal efficiency at various
background efficiencies (1%, 10% and 30%). These values are obtained from the ’test
sample’, the part of the data that has not been used in the training in order to get an
unbiased performance estimate. Note: The above numbers mean, that for example at if
form my analysis I would need a background reduction of at 99%, (i.e. 1% background



efficiency), the tuned classifier is about a factor of 0.092/0.050=1.82 more efficient !!!
Almost DOUBLED the efficiency! Well worth the little effort in ’tuning’, isn’t it? B.t.w, the
numbers in parenthesis are the corresponding efficiency values if evaluated on the training
sample. If they differ by a lot, it hints at a possible overtraining which then typically
results in a less then optimal classifier performance on the test sample. If observed, try to
lower the flexibility of the classifier. (i.e. larger MinNodeSize, smaller MaxDepth, smaller
AdaBoostBeta etc..)

Using the GUI, check also the ¢ ‘Classifier Output Distributions’’ to see if the
classifiers look 'healthy’ (nice and smooth, distributions) and the ¢ ‘ROC curves’’ (backgr.
rejection vs signal eff.) or (1/backgr.efficiency vs signal eff) to asses and compare nicely
the performance of the classifier(s). The later ROC curves are 'truncated’ towards the zero
backgr. efficiency as obviously the tend to infinity there. This representation however shows
more clearly the difference in performance of the classifiers in the very high purity (high
background rejection) region which is often important. To see which classifier does best
for things like cross section measurements, check the ¢ ‘Classifier Cut Efficiencies’’
from the GUI which also shows the statistical significance of the selected event sample
(S/Sqrt(S+B)) and at which working point (mva-cut value corresponding to a certain
signal(backgr.) its maximum is reached.

5 Use a Neural Network

Boosted Decision trees are very popular. They are more robust (require in real life examples
less effort in tuning the parameters). But you’ll later see why I think it is well work also
experimenting with Neural Networks. Repeat the previous exercise for the "TMVA::kMLP’
classifier.

The most important parametes to tune for the NNs are:

e HiddenLayers :
The number of nodes in the various NN layers. HiddenLayers=N+2:N for example
means: two hidden layers, the first with N+2 nodes and the second one with N
nodes, where N stands for the number of input variables. This is the most important
parameter (the network architecture) that determines mainly the model flexibility.
NOTE: Try 1 or maximum 2 layers. “Deep networks” are not really supported yet
in TMVA.

e VariableTransform:
Too bad, that’s in most cases best set to 'normalize’ which means, all variables are
normalized to the same value range between [0,1], but the TMVA default is set to
‘none’ :( . In this tutorial it is unnecessary, as all the variables have the same value
range anyway. I thought about that too late :(.

e UseRegulator:
Apply a L2 norm regulator to avoid overtraining (prefers small weights, and weight



close to zero translate to an effective almost linear classifier. Hence this regulation
procedure prefers ’simple models’ and hence helps to avoid overtraining, even if the
number of layers/nodes allows in principle for a very complicated model.

The number of boost steps. (just needs to be large enough. Too large mainly costs
time (which is important, too)

o NeuronType:
sigmoid or the often better because of its symmetrie ‘tanh’.

“Play” with those parametes until you've reached a performance like this:

—--- Factory : Testing efficiency compared to training efficiency (overtraining check)
--- Factory : ---—-—H—1H+7171-—-——-""""-"-"""-"-"-""""""""""""""""""""""""""""~————— - ————————
--- Factory : MVA Signal efficiency: from test sample (from training sample)
--— Factory : Method: ©B=0.01 ©B=0.10 ©B=0.30

--- Factory : -
-—— Factory : MLPTuned : 0.099 (0.104) 0.459 (0.467) 0.839 (0.845)

--- Factory : MLPDefault : 0.061 (0.052) 0.270 (0.297) 0.590 (0.601)

6 More on Variable selection

Now as you have already resasonably tuned BDTs and Neural Networks for 2 variables,
add the other available variables and have a look again at the performance.

e run the training on the tuned classifiers’ from before on all 8 variables.

e which variable would you first try to eliminate again? Do so, re-train and compare
the performance.

e when I did so with my 'tuned classifiers’
(BDTTuned: NTrees=2000:MinNodeSize=1.%:BoostType=AdaBoost:AdaBoostBeta=0.05:MaxDep
(MLPTuned: NeuronType=tanh:VarTransform=N:HiddenLayers=N-+10:UseRegulator)
the performance of the BDT stays basicall the same, the MLP however actually per-
forms better after removing the variables. Explain WHY this happens ?

Note: The tuned config paramters for the 2variable case are not necessarily the best
also for the 8 variables. But for now let’s not spend too much time on re-tuning those.
With the tuned parameters as given above and w/o variables 3 and 4, the neural network
actually performs better than the boosted decision tree. This is often the case for ’toy
examples’. In real life however it is often difficult to train a network to get better than the
BDT because of lack of data etc. A feature that is however almost always in favour of the
neural network and hardly ever considered is demonstrated in the next section.



7 Decision Boundaries

In multidimensional parameters space, the visualization of the actual decision boundary
that an MVA classifier cut corresponds to is difficult. It is however instructive at least to
have a look at them in this example. You find for this a script called PlotDecisionBoundary.C.
It plots the 2D projection of two of the variables, and plots the decision boundary (for
an MVA-cut value corresponding to minimum miscalssificaton of signal and background
events) where all the other variables are set to their 'mean value’.
Now: In order to keep things simple and not having to edit the variable list in the
PlotDecisionBoundary.C script, you need to re-run the BDTTuned and MLPTuned clas-
sifier again with all 8 variables enables.
Then start a root session and execute: root [0] .L PlotDecisionBoundary.C
root [1] PlotDecisionBoundary(8, "weights/TMVA_BDTTuned.weights.xml", "varQO", "varl");
This will plot the decision boundary of the classifier in weights/ TMVA_BDTTuned.weights.xml
for the variables var0 and varl. now compare this decison boundary to the one obtained
for the Neural network?
root [1] PlotDecisionBoundary(8, "weights/TMVA_MLPTuned.weights.xml", "varQO", "varl");

e What do you observe? Which boundary would you rather base your a physics analysis
on 7 Why 7

8 ( 1D-projective) Likelihood or “Naive Bayes Clas-
sifier”

This is one of the first 'multivariate classifiers” which managed to enter the HEP analyses.
It approximates the PDF (S|x) and PDF (B|x) assuming uncorrealted variables (meaning the
joint PDF is the product of the one dimensional PDFs, which then can be easily estimated
with good accuracy by histogramming the MonteCarlo generated events. The classifier
then, just like given by the Neyman-Pearsons lemma, is given by the ratio PDF (S) /PDF (B)
(typically transforms this linearly to “PDF(S)/(PDF (S)+PDF(B))”) which then, if the ap-
proximation of uncorrelated variables were true, is bascially the best possible classifier.
Unfortunatly, the approximation is hardly ever 'correct’. But it’s worth trying to make it
"as good as possible’. Even if the resulting classifier might in the end still be slightly worse
than an BDT or NN, it is a classifier very easy to study (i.e. study impact the impact of
systematic errors on the classifier performance by simply modifying the likelhood reference
distributions)

Therefore, we look at what we can do here in this example with this classifier. Book
the likelhood classifier:

factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood", "H:!V:" );
run it, compare its performance to that of the BDT/NN. Why aren’t you surprised ?



e config parameter tuning.

— Look at he Likelihood Reference Distributions from the GUI. What do
you observe?

— Use the parameters NAvEvtPerBin (i.e. the average number of events per bin
in the reference distribution. The number of bins will be adjusted accordingly)
PDFInterpol=Spline2 and NSmooth=3 to get a better estimate of the ’true
underling PDF's’

— The Likelihood still performs very poor. Why ? Look also at the ’correlation
matrix’ (i.e. from the TMVAGui)

— ’decorrelate’ variables 'varb’ and 'var6’ . Do this directly in the “Factory::AddVariable”
call, which takes as first argument any string specifying a TFormula, that can
also be given to a TTree::Draw command. (e.g. “varb+var6”)

— after this, the performance is still poor, why?

— try to come up with a transformation for variable varl, that tries to remove
the ’correlation’ in the 2D scatter plot varO:varl. NOTE! A TFormula can also
contain statements like: var1>0 7 1 : 0 which would correspond to taking
the heavyside function of the variable varl.

— after you have experimented with the likelihood and the variable transforma-
tions, run also the BDT /NN calssifiers on these transformed variables. What
do you observe.

— It seems that a transformation like

factory->AddVariable("var1>0.5%varO?varli-varO: varl", "Variable 1", "units", °’

give the best performance for the Liklihood. Quit a boost compared to the orig-

inal one, actually. However, BDT/NN seem to loose slightly, although BDT’s

(and for sure NN’s to some extend too) DO also train much easier on variables

that are not correlated. BDTs in particulary don’t like strong linear corre-

lations, as in the end, it operates on many small rectanguar cuts. Therfore

one concludes that some information seems to get lost using this transforma-

tion. But .. nobody forbids us to use 'only 8 combinations of 'the 8 vari-

ables’ .. so ... try to add in addition the ’'other’ option of combining varl

and var2, which does not simply map the varl down onto the var0Q axis, but

rather maps it over to the varl axis. This TOO allows for more rectangu-

lar cuts like separation of signal and background. So add a nineth variable like:
factory->AddVariable( "var1>0.5%var0?var0-0.9*varl:varO", "Variable 0Oa", "unit

and run BDT /NN and Likelihood again. Is there a surprise 77

9 Remarks

e Variable Transformations:



We’ve seen how to apply simple variable transformations directly when adding the
variables to the factory. There are a couple of (decorrelation) transformations ava-
iable in TMVA that can be invoked individually for each classifier. In order to see
how they transfrom the variables (1D-projections and the 2D Variable-vs-variable)
distributions, they can also be invoked at the instatiation of the "TMVA::Factory’
( :Transformations=I;D;P;G,D: in the option string ). Note however, it is typically
much better to 'manually’ construct your own custom transformation of the variables.

“Most useful” variable transformations

Probably the most useful variable transforamations that should be considered is to
'smooth’ out variables that exhibit sharp peaks. Typically such peaks occure 1 (e.g
a cosine of an opening angle) or zero as result of some pole in the cross section. Such
sharp features are ’poison’ for any numeric algorithm ! They can however easily
be avoided using ’acos’, 'log’ or similar simple functions as transformation to the
numeric value of the variable

Break up the variable space into 'categories’

Unfortunatly the MethodCategory does not work as intended. Nontheless, it is im-
portant and often results in much simpler classifiers and better performance if the
event sample is split into subsamples with systematically differnt behviour. (i.e. in
the toy example, one part of the sample that exhibits a strong linear correlation be-
tween varQ and varl and the other half which does not.) In the exercise, we applied
an intermediate solution using a piecewise transformation to make the variable easier
to handle. In real life, one would probably split the event sample, train, tune and
later apply two indipendent classifiers to events of the respective regions. Give it a
try ! You might improve on the combined performance. I would not be surprized
if in this toy example, the Likelhood performance could almost match that of the
BDT/NN if treated that way. Let me know if it does !

In this tutorial, we only looked at the 'training’ of the classifier. Once this is done,
use the TMVA::Reader to 'retrieve’ the trained classifier from the weight files and
apply the selection in your ’event loop’ Look at then example in "TMVAClassifica-
tionApplication.C’ . Note: Any parameter transformations that were easily done in
the "Factory::AddVariable’ e.g.
factory->AddVariable("varb+var6", "variable 5");
factory->AddVariable("var5-var6", "variable 6");

still need to be announced to the reader by saying:
factory->AddVariable("varb5+var6", \&transVarb);
factory->AddVariable("var5-var6", \&transVar6);



but obviously the addresses &transVarb and &transVarb cannot simply be refering
to the addresses of variable var5 and var6 in the TTree. Here one needs now to
calcualte oneself transVarb = varb+var6 ; transVar6 = varb-var6; in the event loop.
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