LHC Benchmarks for the CP-conserving 2HDM

Howard E. Haber 2HDM benchmark discussion CERN, 23 June 2015

<u>Outline</u>

- 1. The CP-conserving softly-broken $\mathbb{Z}_2\text{-symmetric}$ 2HDM
- 2. The alignment limit
- 3. A hybrid strategy for specifying the model input parameters
- 4. 2HDM benchmarks scenarios

<u>reference</u>: Howard E. Haber and Oscar Stål, to appear soon on the arXiv.

The CP-conserving softly-broken \mathbb{Z}_2 -symmetric 2HDM

- The scalar potential $\mathcal{V}(\Phi_1, \Phi_2)$ consists of real squared-mass parameters m_{ih}^2 and quartic coupling parameters λ_i , and the vacuum expectation values, $\langle \Phi_i^0 \rangle \equiv v_i$, are real. Define $\tan \beta \equiv v_2/v_1$.
- Due to the \mathbb{Z}_2 symmetry of the dimension-4 terms of the Higgs Lagrangian, a term in \mathcal{V} of the form $(\Phi_1^{\dagger}\Phi_2)(\lambda_6\Phi_1^{\dagger}\Phi_1 + \lambda_7\Phi_2^{\dagger}\Phi_2) + h.c.$ is absent.
- Extending the Z₂ to the Higgs-fermion interactions can be done in one of four ways, leading to Type-I, II, X or Y Yukawa couplings. This eliminates tree-level Higgs-mediated FCNCs.
- Defining the Higgs basis such that $\langle H_1^0 \rangle = v/\sqrt{2}$ and $\langle H_2^0 \rangle = 0$.

$$H_1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix} \equiv \frac{v_1 \Phi_1 + v_2 \Phi_2}{v}, \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \equiv \frac{-v_2 \Phi_1 + v_1 \Phi_2}{v}$$

• In the Higgs basis, the coefficients of the quartic terms of \mathcal{V} are denoted by Z_i (i = 1, 2, ..., 7). Two relations exist due to the \mathbb{Z}_2 symmetry.

The alignment limit

The two CP-even scalars are h and H with $m_h < m_H$ and corresponding mixing angle α . If h is SM-like (as suggested by the Higgs data), then

$$g_{hVV}/g_{h_{\rm SM}VV} = s_{\beta-\alpha} \simeq 1$$
,

Indeed, for $c_{\beta-\alpha} = 0$, h is exactly aligned with $\sqrt{2} \operatorname{Re} H_1^0 - v$ and behaves exactly like the SM-like Higgs. Approximate alignment implies that $|c_{\beta-\alpha}| \ll 1$.

$$c_{\beta-\alpha} = -\operatorname{sgn}(Z_6)\sqrt{\frac{Z_1v^2 - m_h^2}{m_H^2 - m_h^2}} = \frac{-Z_6v^2}{\sqrt{(m_H^2 - m_h^2)(m_H^2 - Z_1v^2)}},$$

implies that $m_h^2 \simeq Z_1 v^2$ and approximate alignment is achieved if either $|Z_6| \ll 1$ and/or $m_H \gg m_h$. The limit $m_H \gg m_h$ corresponds to the decoupling limit. Alignment without decoupling is possible if $|Z_6| \ll 1$.

Note that $g_{HVV}/g_{h_{\rm SM}VV} = c_{\beta-\alpha}$, so it is possible to have H as the SM-like Higgs boson if $|s_{\beta-\alpha}| \ll 1$. In this case, further manipulation of the above equation yields $m_H^2 \simeq Z_1 v^2$ and once again, alignment without decoupling is possible if $|Z_6| \ll 1$. (In this case no decoupling limit exists.)

A hybrid strategy for specifying the model input parameters

We choose as an input parameter set,

$$\{m_h, m_H, c_{\beta-\alpha}, \tan\beta, Z_4, Z_5, Z_7\},\$$

in a convention where $0 \le \beta \le \frac{1}{2}\pi$ and $0 \le \beta - \alpha \le \pi$.

Key features are as follows:

- Uses the Higgs data to fix one CP-even Higgs mass and constrain the range for $c_{\beta-\alpha}$ which is determined by the CP-even Higgs couplings to ZZ/WW.
- Easy to implement theoretical constraints on parameters (e.g., perturbativity limits for the Z_i); useful for 2HDM parameter scans.
- Easy to implement phenomenological constraints on parameters (e.g., restrictions in $[\tan \beta, m_{H^{\pm}}]$ parameter space due to B physics observables).
- All Higgs-basis parameters are determined from the above set, which fixes the 2HDM model precisely.

The masses of A and H^{\pm} are determined by Z_4 and Z_5 ,

$$m_A^2 = m_H^2 s_{\beta-\alpha}^2 + m_h^2 c_{\beta-\alpha}^2 - Z_5 v^2 ,$$

$$m_{H^{\pm}}^2 = m_A^2 - \frac{1}{2} (Z_4 - Z_5) v^2 .$$

Keeping Z_4 , $Z_5 \sim O(1)$ ensures that unitarity, perturbativity and the S and T constraints are respected. We sometimes utilize three special cases in our scans:

$$m_A = m_{H^{\pm}} \iff Z_4 = Z_5,$$

$$m_H = m_{H^{\pm}} \text{ and } c_{\beta-\alpha} = 0 \implies Z_4 = -Z_5,$$

$$m_H = m_A \text{ and } c_{\beta-\alpha} = 0 \implies Z_5 = 0.$$

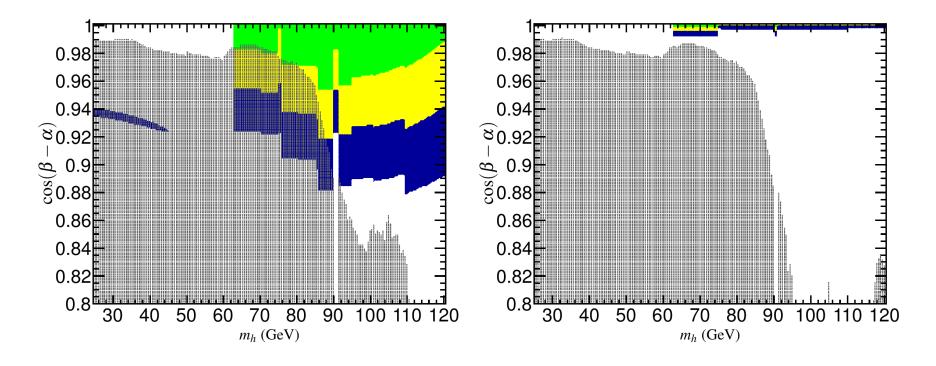
 Z_7 can be traded in for the \mathbb{Z}_2 symmetry-breaking soft squared-mass term m_{12}^2 or for the dimensionless coupling λ_5 , via

$$\overline{m}^2 \equiv \frac{m_{12}^2}{s_\beta c_\beta} = m_A^2 + \lambda_5 v^2 = m_H^2 s_{\beta-\alpha}^2 + m_h^2 c_{\beta-\alpha}^2 + \frac{1}{2} \tan 2\beta (Z_6 - Z_7) v^2 \,,$$

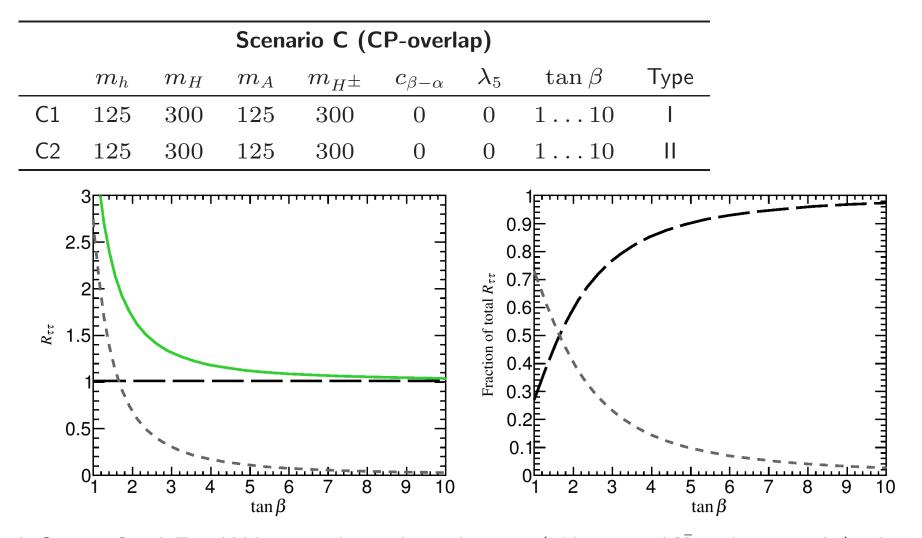
where $Z_6 v^2 = (m_h^2 - m_H^2) s_{\beta - \alpha} c_{\beta - \alpha}$.

Benchmark scenarios

- A. *h* is SM-like; $m_A \sim m_{H^{\pm}}$ large to avoid *B*-constraints. Take $Z_4 = Z_5 = -2$ so that *H* is the second lightest Higgs boson. Search for *H*. $Z_7 = 0$; $\tan \beta = 1 \dots 50$.
- B. *H* is SM-like, hVV ($V = W^{\pm}$ or *Z*) is weakly coupled. Search for *h*. $Z_7 = 0$; tan $\beta \sim 1.5$; $m_A \sim m_{H^{\pm}}$ large.
- C. *h* SM-like; $m_h \simeq m_A$; $m_A \sim m_{H^{\pm}}$ large. Achieved by fine-tuning Z_5 .
- D. h is SM-like; decay channels $H \to AZ$ and/or $H \to H^{\pm}W^{\mp}$ are open.
- E. *h* is SM-like; "long cascade" decay channels $H^{\pm} \to AW^{\pm} \to HZW^{\pm}$ or $A \to H^{\pm}W^{\mp} \to HW^+W^-$ are open.
- F. h has SM-like couplings to VV and up-type fermions. Coupling to downtype fermions is SM-like in magnitude but opposite in sign (only possible for Type-II) [cf. P.M. Ferreira et al., Phys. Rev. D 89, 115003 (2014)].
- G. MSSM-like scenario for heavy Higgs bosons in a Type-II 2HDM.

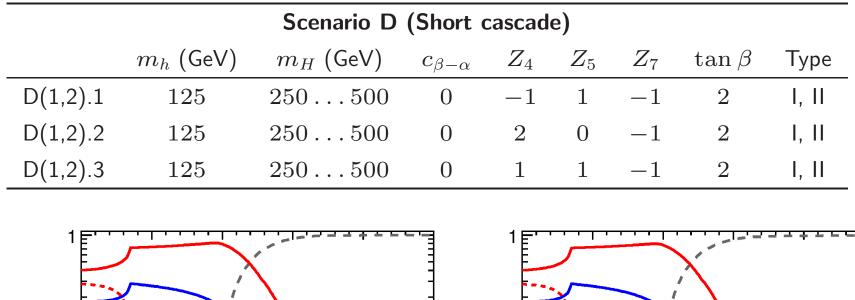

Numerical Procedure

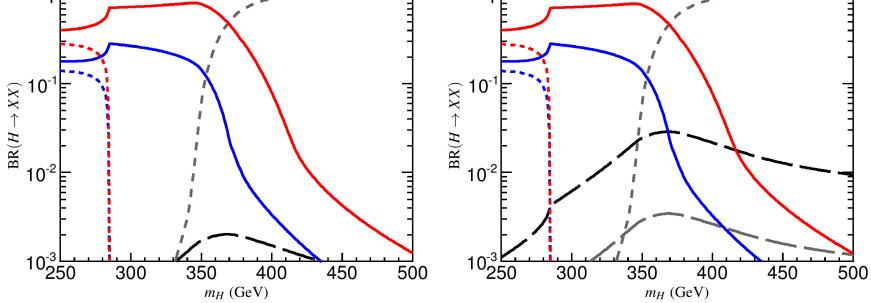
- 1. 2HDM constraints (e.g., vacuum stability, unitarity) implemented by the code 2HDMC .
- 2. Numerical analysis of branching ratios and cross sections based on the codes 2HDMC and SusHi.
- 3. Implementing constraints from direct Higgs searches are evaluated using HiggsBounds.
- 4. Implementing constraints due to the observation of a SM-like Higgs boson are evaluated using HiggsSignals.
- 5. T-parameter constraints easily accommodated by taking $m_{H^{\pm}}^2 m_A^2 \lesssim \mathcal{O}(v^2)$ or $m_{H^{\pm}}^2 m_H^2 \lesssim \mathcal{O}(v^2)$.
- 6. Flavor constraints apply in a pure 2HDM. The latest result of M. Misiak et al., Phys. Rev. Lett. **114**, 221801 (2015), based on the observed $b \rightarrow s\gamma$ rate yields $m_{H^{\pm}} \gtrsim 480$ GeV at 95% CL in a Type-II 2HDM.


Scenario A (Non-alignment)								
	$m_h~({\sf GeV})$	$m_H~({\sf GeV})$	$c_{eta-lpha}$	Z_4	Z_5	Z_7	aneta	Туре
A1.1	125	$150 \dots 600$	0.1				$1 \dots 50$	I
A1.2	125	150600	$0.1 imes \left(rac{150 ext{ GeV}}{m_H} ight)^2$	-2	-2	0	$1 \dots 50$	Ι
A2.1	125	150600	0.01		-2	0	$1 \dots 50$	П
A2.2	125	150600	$0.01 \times \left(\frac{150 \text{ GeV}}{m_H}\right)^2$	-2	-2	0	$1 \dots 50$	II

- All values of $\tan \beta$ allowed and $c_{\beta-\alpha} \lesssim 0.1$ in Type-I; $\tan \beta \lesssim 10$ favored and $c_{\beta-\alpha} \lesssim 0.01$ in Type-II.
- Cross sections are largest for low $\tan \beta$ (enhanced *t*-quark loop). Region of enhanced *b* quark loop in Type-II at large $\tan \beta$ disfavored by direct searches for *H* and *A*.
- For Type-I at $c_{\beta-\alpha} = 0.1$ and low $\tan \beta$, $H \to VV$ dominate for $m_H < 250$ GeV, $H \to hh$ dominates for $m_H = 250$ —350 GeV, $H \to t\bar{t}$ dominates for $m_H > 350$ GeV.
- For Type-II at $c_{\beta-\alpha} = 0.01$, fermionic decays of H are most important. At low $\tan \beta$ $H \rightarrow hh$ can reach 10% BR for $m_H \sim 300$ GeV.
- Suggestion: choose $\tan \beta = 1.5$ and 10 as representative points and scan over m_H .

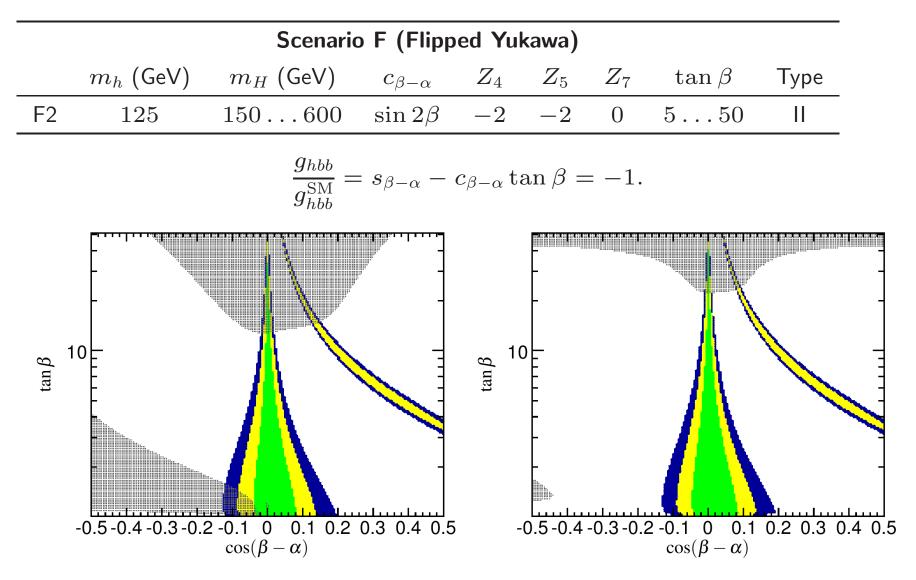
Scenario B (SM-like H)								
	$m_h~({\sf GeV})$	$m_H~({\sf GeV})$	$c_{\beta-lpha}$	Z_4	Z_5	Z_7	aneta	Туре
B1.1	65120	125	1.0	-5	-5	0	1.5	I
B1.2	80120	125	0.9	-5	-5	0	1.5	I
B2	$65 \dots 120$	125	1.0	-5	-5	0	1.5	П




Allowed parameter regions for h in Scenario B with Type-I Yukawa couplings (left) and Type-II couplings (right). The colors indicate statistical compatibility with the 125 GeV Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). The gray region is excluded at 95% C.L. by constraints from direct searches at LEP and the LHC.

In Scenario C with Type-I Yukawa couplings, the total $\tau\tau$ rate (adding gg and $b\bar{b}$ production modes), relative to the SM, from h (long dashes), A (short dashes) and their sum (green, solid). Right: the respective fractions of the inclusive $\tau\tau$ rate resulting from h (long dashes) and A (short dashes).

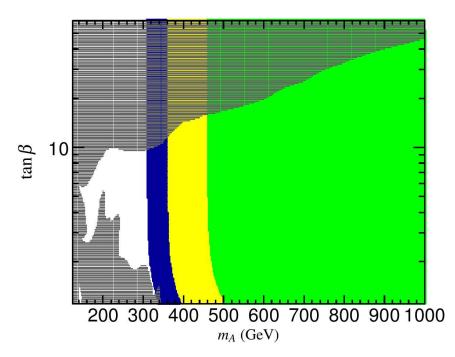
Note: In Type-II models, the signal strength $R_{\tau\tau} > 1.5$ for all $\tan \beta$, since $\sigma(b\bar{b} \to A)$ is enhanced at large $\tan \beta$ and $\sigma(gg \to A)$ is enhanced at small $\tan \beta$.


Branching ratios of H in Scenario D with both m_A and $m_{H^{\pm}}$ low for $\tan \beta = 2$ with Type-I (left) and Type-II (right) Yukawa couplings. The colors show $H \to ZA$ (blue, solid), $H \to AA$ (blue, short dash), $H \to W^{\pm}H^{\mp}$ (red, solid), $H \to H^{+}H^{-}$ (red, short dash), $H \to t\bar{t}$ (gray, dash) and $H \to b\bar{b}$ (black, long dash) and $H \to \tau\tau$ (gray, long dash).

Scenario E (Long cascade)								
	$m_h~({\sf GeV})$	$m_H~({\sf GeV})$	$c_{eta-lpha}$	Z_4	Z_5	Z_7	aneta	Туре
E(1,2).1	125	200300	0	-6	-2	0	2	I, II
E(1,2).2	125	$200 \dots 300$	0	1	-3	0	2	I, II

- Choose 2HDM parameters to allow two step decays involving all three non-SM Higgs bosons. Assume that H is the lightest.
- Competing decays: $H^{\pm} \to AW^{\pm} \to HZW^{\pm}$ and $H^{\pm} \to W^{\pm}H$.
- Competing decays: $A \to H^{\pm}W^{\mu} \to HW^+W^-$ and $A \to ZH$
- Branching ratios for two step decays are typically around 5%.

	Masses (GeV)			Branching ratios				
Scenario	m_H	m_A	$m_{H^{\pm}}$	$H^{\pm} \to W^{\pm}A$	$H^{\pm} \to W^{\pm} H$	$A \to ZH$	$A^{\pm} \to W^{\pm} H^{\mp}$	
E1	200	402	532	0.053	0.79	0.62	_	
	300	460	577	0.041	0.74	0.39	_	
E2	200	471	317	_	0.27	0.56	0.25	
	300	521	388	-	0.026	0.50	0.20	


Mass spectrum and branching ratios of interesting decay modes in Scenario E.

Direct constraints from LHC Higgs searches on the parameter space for the 2HDM Type-II with $m_H = 300 \text{ GeV}$ (left) and $m_H = 600 \text{ GeV}$ (right). The colors indicate compatibility with the observed Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion bounds at 95% C.L. from the non-observation of the additional Higgs states are overlaid in gray. The flipped Yukawa branch appears at larger values of $c_{\beta-\alpha}$.

Scenario G (MSSM-like)								
	$m_h~({\sf GeV})$	$m_A~({\sf GeV})$	aneta	Туре				
G2	125	901000	$1 \dots 60$	11				

Inspired by the MSSM Higgs potential, we take $\lambda_1 = \lambda_2 = \frac{1}{4}(g^2 + g'^2)$, $\lambda_3 = \frac{1}{4}(g^2 - g'^2)$, $\lambda_4 = -\frac{1}{2}g^2$, $\lambda_5 = \lambda_6 = \lambda_7 = 0$, and $m_{12}^2 = m_A^2 s_\beta c_\beta$. Simulating the largest MSSM radiative correction, we then shift $\lambda_2 \to \lambda_2 + \delta$ and choose δ to fix $m_h = 125$ GeV.

Allowed parameter space by direct Higgs search constraints in the "MSSM-like" Type-II 2HDM. The colors indicate compatibility with the observed Higgs signal at 1σ (green), 2σ (yellow) and 3σ (blue). Exclusion bounds at 95% C.L. from the non-observation of the additional Higgs states are overlaid in gray.