2HDM $h^{\text{SM}} \rightarrow Za_1$ benchmarks

Daniele Barducci

R. Aggleton, S. Moretti, A. Nikitenko and C. Shepherd-Themistocleous

23rd June 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2HDM scan for $h^{\text{SM}} \rightarrow ZA$ decays

We have investigate type I and type II 2HDM looking for exotic decay patterns of the SM-like Higgs boson such as

- $h^{\rm SM} \rightarrow ZA \rightarrow Z\mu^+\mu^-$
- $h^{\rm SM} \rightarrow ZA \rightarrow Z\tau^+\tau^-$
- $h^{
 m SM}
 ightarrow ZA
 ightarrow Zbar{b}$

This decay channels are novelty within ATLAS and CMS

Recent studies have focused upon decays of heavy $H/A \rightarrow Xh^{\rm SM}$ arXiv:1502.04478, arXiv:1504.04710, CMS-PAS-HIG-15-001

Exotic Higgs decays not excluded a priori

2HDM scan for $h^{\text{SM}} \rightarrow ZA$ decays

We have scan the 2HDM in the physical basis

- $m_h = 122,128 \text{ GeV}$ $m_{H,H^\pm} = 150,900 \text{ GeV}$ $m_A = 1,100 \text{ GeV}$

- tan β =1.5,50 m_{12}^2 = -4000,4000 GeV² sin($\beta - \alpha$) = -1,1

- $\lambda_{6,7}=0$

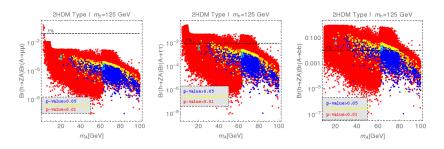
Tools used for the scan

- 2HDMC
- HiggsBounds+HiggsSignals
- SuperISO

2HDM scan for $h^{\rm SM} ightarrow ZA$ decays

2HDMC v.1.6.5

- Generation of spectrum and decay tables
- Vacuum stability, Unitarity and Perturbativity constraints


HiggsBounds v.4.1.3 + HiggsSignals v.1.6.5

- Constraints from current measurements of the Higgs boson properties
- Constraints from non observation of further scalar in addition to h^{125}

SuperISO v.3.4

- Constraints arising from flavour measurements

2HDM type I benchmarks

Red, Yellow and blue correspond to a p-value < 0.01, \in (0.01, 0.05) and > 0.05 as compute by HiggsSignal

イロト 不得 トイヨト イヨト

э

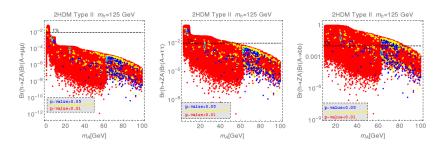
We select two benchmarks at $m_A \sim 20~{
m GeV}$ and $m_A \sim 65~{
m GeV}$ maximising the Br product

We call this benchmarks A and B respectively

2HDM type I

Benchmark A: $m_A \sim 20$ GeV

- $m_{H,H^\pm} \sim 165$, 444 GeV tan $eta \sim 1.86$ $m_{12}^2 \sim 3891$ GeV 2 $s_{eta lpha}$ =-0.99
- $Br(h \rightarrow ZA) \sim 0.1$ $Br(h \rightarrow \mu\mu) \sim 2 \cdot 10^{-4}$ $Br(A \rightarrow \tau\tau) \sim 6 \cdot 10^{-2}$ $Br(A \rightarrow b\bar{b}) \sim 0.85$
- $r_{hgg} = 0.93$


Benchmark B: $m_A \sim 63 \text{ GeV}$

- $m_{H,H^\pm} \sim 154$, 257 GeV tan $eta \sim 6.20$ $m_{12}^2 \sim 2793$ GeV^2 $s_{eta lpha}$ =-0.85
- $Br(h \rightarrow ZA) \sim 0.03$ $Br(h \rightarrow \mu\mu) \sim 2 \cdot 10^{-4}$ $Br(A \rightarrow \tau\tau) \sim 7 \cdot 10^{-2}$ $Br(A \rightarrow b\bar{b}) \sim 0.79$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- $r_{hgg} = 0.77$

2HDM type II

Red, Yellow and blue correspond to a p-value < 0.01, \in (0.01, 0.05) and > 0.05 as compute by HiggsSignal

We select three benchmarks at $m_A\sim$ 6, $m_A\sim$ 25 GeV and $m_A\sim$ 65 GeV maximising the Br product

We call this benchmarks C, D and E respectively

2HDM type II

Benchmark C: $m_A \sim 6 \text{ GeV}$

- $m_{H,H^\pm} \sim$ 263, 308 GeV tan $eta \sim$ 1.89 $m_{12}^2 \sim$ 2737 GeV^2 $s_{eta lpha} =$ 0.99
- $Br(h \rightarrow ZA) \sim 0.3$ $Br(h \rightarrow \mu\mu) \sim 3 \cdot 10^{-3}$ $Br(A \rightarrow \tau\tau) \sim 0.78$ $Br(A \rightarrow b\bar{b}) = 0$
- $r_{hgg} = 1.09$

Benchmark D: $m_A \sim 25 \text{ GeV}$

- $m_{H,H^\pm}\sim$ 227, 226 GeV tan $\beta\sim$ 1.76 $m_{12}^2\sim$ 3406 GeV $s_{etalpha}$ =0.99
- $Br(h \rightarrow ZA) \sim 0.15$ $Br(h \rightarrow \mu\mu) \sim 2 \cdot 10^{-4}$ $Br(A \rightarrow \tau\tau) \sim 6 \cdot 10^{-2}$ $Br(A \rightarrow b\bar{b}) \sim 0.91$
- $r_{hgg} = 0.10$

Benchmark E: $m_A \sim 63 \text{ GeV}$

- $m_{H,H^\pm}\sim$ 210, 333 GeV tan $\beta\sim$ 2.38 $m_{12}^2\sim$ 4791 GeV^2 $s_{etalphalpha}{=}0.7$
- $Br(h \rightarrow ZA) \sim 0.04$ $Br(h \rightarrow \mu\mu) \sim 3 \cdot 10^{-4}$ $Br(A \rightarrow \tau\tau) \sim 7 \cdot 10^{-2}$ $Br(A \rightarrow b\bar{b}) \sim 0.79$
- r_{hgg} =0.91

Comments

On-shell Z boson scenario

Scenario A, C and D have an on-shell Z boson arising from the $h \to ZA$ decay \to possibility to trigger onto the dimuon system

Scenario C has a very light pseudoscalar boson \rightarrow heavily boosted decay products. Both ATLAS and CMS have analysis that tackle boosted μ and τ production from light boson decays arXiv:1505.01609, CMS-PAS-HIG-13-010

Scenario A and D produces slightly boosted objects and for $A \rightarrow b\bar{b}$ decay standard reconstruction of b-jet might be inefficient. Possibility of using jet-substructure technique

Comments

Off-shell Z boson scenario

Scenario B and E have an off-shell Z boson arising from the $h \to Z\!A$ decay \to

No possibility to reconstruct clearly the Z peak

Still possible to trigger on one (or even both) muons from the Z decay

No boosted pseudoscalar boson, decay products well separated in the detector