Benchmark Points for Exotic Higgs Decays

Shufang Su, Felix Kling • U. of Arizona

Higgs Cross Section Working Group WG3: BSM - Extended Scalars June 23, 2015

• Exotic decays of non-SM Higgses

Benchmark points

Type II 2HDM

after EWSB, 5 physical Higgses CP-even Higgses: h⁰, H⁰, CP-odd Higgs: A⁰, Charged Higgses: H[±]

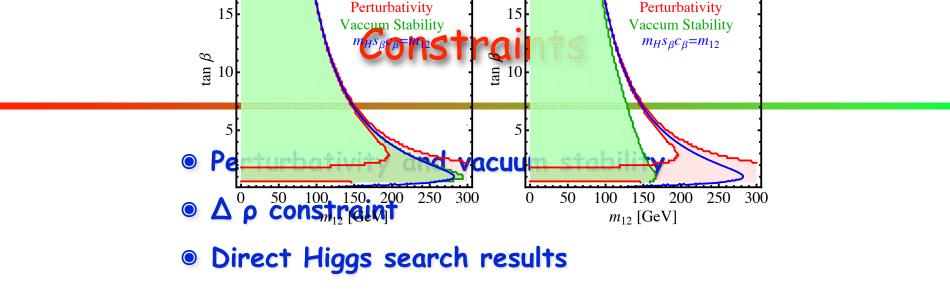
Searching for Other Higgses

neutral	HH type	(bb/ττ/WW/ZZ/γγ)(bb/ττ/WW/ ZZ/γγ)	$\begin{array}{l} h_{SM} \rightarrow AA, \\ H \rightarrow h_{SM} h_{SM}, \\ H \rightarrow AA, \\ A_i \rightarrow H_j A_k, \dots \end{array}$
	H ⁺ H ⁻ type	(TV/tb)(TV/tb)	H → H ⁺ H ⁻
Higgs	WH [±] type	(lv/qq') (τν/tb)	H/A→ WH [±]
	ZH type	(II/qq/vv)(bb/ττ/WW/ZZ/γγ)	H → ZA, A→ ZH,
charge Higgs	WH type	(lv/qq')(bb/тт)	tH [±] production, H [±] → WH H [±] → WA

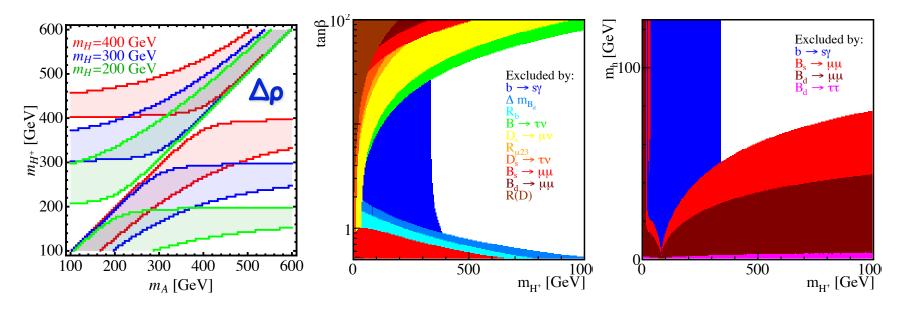
Searching for Other Higgses

	HH type	(bb/tt/WW/ZZ/ɣɣ)(bb/tt/WW/ ZZ/ɣɣ)	$\begin{array}{l} h_{SM} \rightarrow AA, \\ H \rightarrow h_{SM} h_{SM}, \\ H \rightarrow AA, \\ A_i \rightarrow H_j A_k, \dots \end{array}$
neutral	H⁺H⁻ type	(TV/tb)(TV/tb)	H → H ⁺ H ⁻
Higgs	WH [±] type	(lv/qq') (τν/tb)	H/A→ WH [±]
	ZH type	(II/qq/vv)(bb/ττ/WW/ZZ/γγ)	H → ZA, A→ ZH,
charge Higgs	WH type	(lv/qq')(bb/тт)	tH [±] production, H [±] → WH H [±] → WA

Searching for Other Higgses


neutral	HH type	(bb/ττ/WW/ZZ/γγ)(bb/ττ/WW/ ZZ/γγ)	$\begin{array}{l} h_{SM} \rightarrow AA, \\ H \rightarrow h_{SM} h_{SM}, \\ H \rightarrow AA, \\ A_i \rightarrow H_j A_k, \dots \end{array}$
	H ⁺ H ⁻ type	(TV/tb)(TV/tb)	H → H ⁺ H ⁻
Higgs	WH [±] type	(lv/qq') (τν/tb)	H/A→ WH [±]
\rightarrow	ZH type	(II/qq/vv)(bb/ττ/WW/ZZ/γγ)	H → ZA, A→ ZH,
charge Higgs	WH type	(lv/qq')(bb/тт)	tH [±] production, H [±] → WH H [±] → WA

Searching for Other Higgses


	HH type	(bb/ττ/WW/ZZ/γγ)(bb/ττ/WW/ ZZ/γγ)	$\begin{array}{l} h_{SM} \rightarrow AA, \\ H \rightarrow h_{SM} h_{SM}, \\ H \rightarrow AA, \\ A_i \rightarrow H_j A_k, \dots \end{array}$
neutral	H ⁺ H ⁻ type	(TV/tb)(TV/tb)	H → H ⁺ H ⁻
Higgs	WH [±] type	(lv/qq') (τν/tb)	H/A→ WH [±]
	ZH type	(II/qq/vv)(bb/ττ/WW/ZZ/γγ)	H → ZA, A→ ZH,
cha nge Higgs	WH type	(lv/qq')(bb/тт)	tH [±] production, H [±] → WH H [±] → WA

Searching for Other Higgses

neutral Higgs	HH type	(bb/ττ/WW/ZZ/γγ)(bb/ττ/WW/ ZZ/γγ)	$ \begin{array}{c} h_{SM} \rightarrow AA, \\ H \rightarrow h_{SM} h_{SM}, \\ H \rightarrow AA, \\ A_i \rightarrow H_j A_k, \dots \end{array} $
	H⁺H⁻ type	(TV/tb)(TV/tb)	H → H ⁺ H ⁻
	WH [±] type	(lv/qq') (тv/tb)	H/A→ WH [±]
	ZH type	(II/qq/vv)(bb/ττ/WW/ZZ/γγ)	$\begin{array}{c} H \rightarrow ZA, \\ A \rightarrow ZH, \dots \end{array}$
charge Higgs	WH type	(lv/qq')(bb/тт)	tH [±] production, H [±] → WH H [±] → WA

• Flavor constraints (light charged Higgs)

<u>H in the final states</u>

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	$\tan\beta$	m_{12}	$\Delta \rho$	Flavor
125 GeV	200 GeV	350 GeV	400 GeV	1	2	0 GeV	✓	✓
Cha	nnel	BR ($\%$) Pr	oduction		Possible Fi	nal States	
$A \rightarrow HZ$		77.6		ggF	bbll, au au ll			
$H^{\pm} \rightarrow$	HW^{\pm}	61.7	H	$^{\pm}tb$ -ass.		bbbbWW,	$ au \tau b b W W$	

<u>H in the final states</u>

BP1

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	$\tan\beta$	m_{12}	$\Delta \rho$	Flavor
125 GeV	200 GeV	350 GeV	400 Ge	/ 1	2	0 GeV	✓	1
		·						
Char	nnel	BR ($\%$) F	roduction		Possible Fi	nal States	
$A \rightarrow HZ$		77.6		ggF	bbll, au au ll			
$H^{\pm} \rightarrow$	HW^{\pm}	61.7	-	$H^{\pm}tb$ -ass.		bbbbWW,	$ au \tau b b W W$	

• similar to EWCosmo2HDM BP1

	m_{H_0}	m_{A_0}	$m_{H^{\pm}}$	$s_{eta-lpha}$	t_{eta}	μ	2HDM Type	Distinctive signature
A1	180	400	400	1	2	100	I, II	$A_0 \to H_0 Z \left(H_0 \to \bar{b}b \right)$

A in the final states

BP2 similar to Haber/Stal D2.1 (short cascade)

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	$\tan\beta$	m_{12}	$\Delta \rho$	Flavor
125 GeV	300 GeV	200 GeV	375 Ge ^v	/ 1	2	0 GeV	 ✓ 	✓
Chai	nnel	BR ($\%$) P	roduction		Possible Fi	nal States	
$H \rightarrow$	$H \rightarrow AZ$ 79.5			ggF	bbll, au au ll			
$H^{\pm} \rightarrow$	$\rightarrow AW$	56.3		$H^{\pm}tb$ -ass.		bbbbWW,	$ au \tau b b W W$	

m_h	m_H	m_A	$m_{H^{\pm}}$	$\left \sin(\beta - \alpha)\right $	aneta	m_{12}	$\Delta \rho$	Flavor
125 GeV	500 GeV	200 GeV	525 GeV	1	1.6	0 GeV	 ✓ 	1

Channel	BR (%)	Production	Possible Final States
$H \to AA$	31.4	ggF	$bbbb, \tau \tau bb, \tau \tau \tau \tau, \gamma \gamma bb$
$H \to AZ$	55.0	ggF	bbll, au au ll
$H^{\pm} \to AW$	75.3	$H^{\pm}tb$ -ass.	bbbbWW, au au bbWW

<u>A in the final states</u>

BP4

m_h	m_H	m_A	$m_{H^{\pm}}$	$\left \sin(\beta - \alpha)\right $	aneta	m_{12}	$\Delta \rho$	Flavor	
125 GeV	350 GeV	70 GeV	400 GeV	1	2	100 GeV	✓	\checkmark	
				· · · ·					
Char	nnel	BR (%) Pro	duction		Possible Fi	nal States		
$H \rightarrow$	AA	48.2		ggF	l	$bbbb, \tau \tau bb, \tau \tau \tau \tau, \gamma \gamma bb$			
$H \rightarrow$	AZ	51.3		ggF	bbll, au au l		au au ll		
$H^{\pm} \rightarrow$	$\rightarrow AW$	81.6	H^{\pm}	$^{\pm}tb$ -ass.		bbbbWW,	au au b b W W		

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	aneta	m_{12}	$\Delta \rho$	Flavor	
125 GeV	150 GeV	70 GeV 🄇	160 GeV	1	2	0 GeV	1	1	
Char	Channel BR (%)			Production Possible Final States					
$H \rightarrow$	· AA	96.7		ggF	$bbbb, \tau \tau bb, \tau \tau \tau \tau, \gamma \gamma bb$				
H^{\pm} –	$\rightarrow AW$	96.5	tt -	$\rightarrow tH^{\pm}b$	bbbbWW, au au bbWW, au au bWj				

<u>H[±] in the final states</u>

BP6 similar to Haber/Stal D2.2 (short cascade)

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	$\tan\beta$	m_{12}	$\Delta \rho$	Flavor	
125 GeV	300 GeV	300 GeV	200 GeV	1	2	0 GeV	 ✓ 	×	
Char	Channel BR (%)) P:	Production Possible Final States					
$H \to H$	$H \to H^{\pm}W^{\mp}$ 96.0			ggF $tbl\nu$		ν			
$A \to H$	$I^{\pm}W^{\mp}$	95.5		ggF	tbl u				

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	aneta	m_{12}	$\Delta \rho$	Flavor		
125 GeV	225 GeV	300 GeV	200 GeV	1	10	70 GeV	✓	×		
Chai	$Channel \qquad BR (\%) \qquad I$			Production Poss			sible Final States			
$A \to H$	$A \to H^{\pm}W^{\mp}$ 50.4		ggF		tbl u, au u l u					

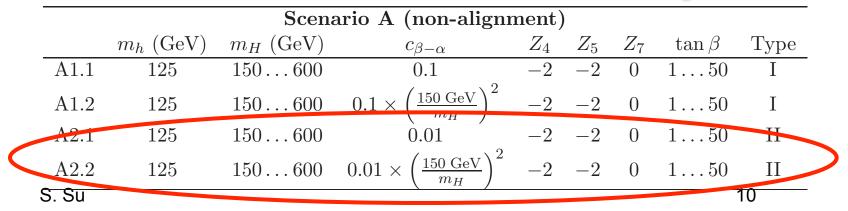
Channel	BR (%)	Channel	BR (%)
$H^{\pm} \to tb$	52.2	$H^{\pm} \to \tau \nu$	46.7
S. Su			0

<u>H[±] in the final states</u>

• **BP8**

m_h	m_H	m_A	$m_{H^{\pm}}$	$\left \sin(\beta - \alpha)\right $	aneta	m_{12}	$\Delta \rho$	Flavor
125 GeV	450 GeV	250 GeV	200 GeV	1	2	0 GeV	 ✓ 	×

Channel	BR (%)	Production	Possible Final States
$H \to H^{\pm}W^{\mp}$	53	ggF	tbl u
$H \rightarrow H^+ H^-$	26	ggF	ttbb
$H \to AZ$	14	ggF	bbll, au au ll

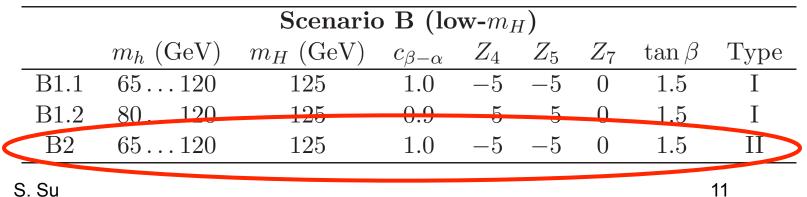

similar to Haber/Stal D2.3 (short cascade)

<u>h in the final states</u>

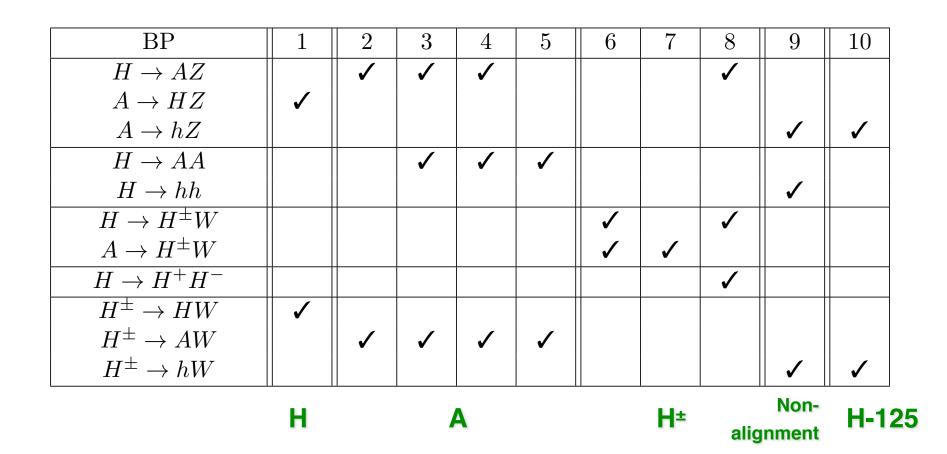
BP9: non-alignment

					\frown					
m_h	m_H	m_A	m_H	ŧ	$\sin(\beta - \alpha)$) t	$\tan\beta$	m_{12}	$\Delta \rho$	Flavor
125 GeV	300 GeV	300 GeV	400 🤆	eV	0.6		2	100 GeV	1	1
Char	$Channel \qquad BR (\%) \qquad I$		Pr	oduction	Possible Final States					
$A \rightarrow$	hZ	hZ 98.4 ggF			ggF	$bbll, au au ll, ZZll, \gamma \gamma ll$				
$H \to hh$ 15.7			ggF		$bbbb, au au bb, llllbb, \gamma \gamma bb$					
$H^{\pm} \to hW$ 66				Η	$t^{\pm}tb$ -ass.	$bbbbWW, au au bbWW, llllbbWW, \gamma\gamma bbW$				$\gamma\gamma bbWW$

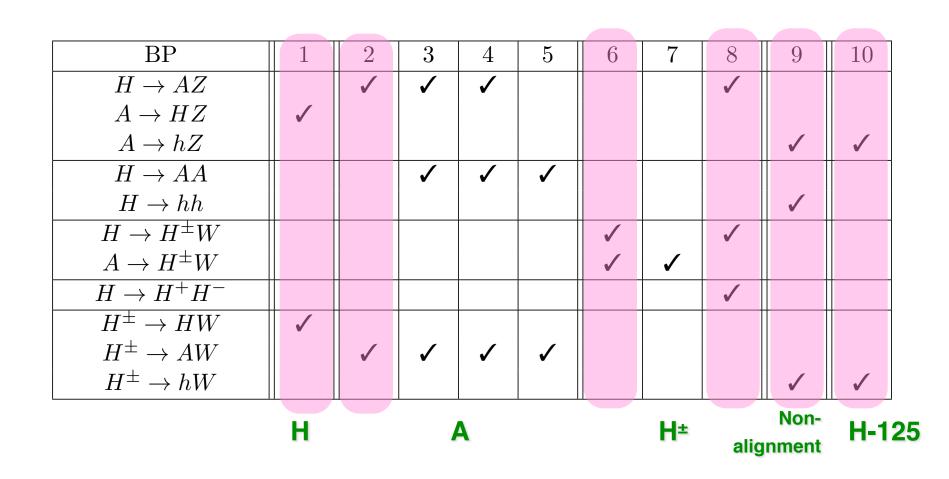
• similar to Haber/Stal A2.1, A2.2 (non-alignment)



H as 125 SM-like Higgs


BP10

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(\beta - \alpha)$	$\tan \beta$	m_{12}	Δho	Flavor		
70 GeV	125 GeV	300 GeV	350 GeV	0	2	0 GeV	✓	1		
Char	Channel BR (%)			oduction	Possible Final States					
$\overline{\qquad A \rightarrow \qquad}$	hZ	99.4		ggF	$bbll, au au ll, ZZll, \gamma \gamma ll$					
H^{\pm} –	$\rightarrow hW$	77.9	H	$t^{\pm}tb$ -ass.	$bbbbWW, au au bbWW, llllbbWW, \gamma\gamma b$			$\gamma\gamma bbWW$		


• similar to Haber/Stal B2, low m_H

