Inert doublet model benchmarks for the 13 TeV run of the LHC

Tania Robens

based on work with

A. Ilnicka, M. Krawczyk (arXiv:1505.04734; work in progress)

TU Dresden

Higgs Cross Section group meeting Vidyo 23.6.2015

Inert doublet model: The model

 idea: take CP conserving to Higgs doublet model, add additional exact Z₂ symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
 - potential

$$\begin{split} V &= -\frac{1}{2} \left[m_{11}^2 (\phi_S^\dagger \phi_S) + m_{22}^2 (\phi_D^\dagger \phi_D) \right] + \frac{\lambda_1}{2} (\phi_S^\dagger \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^\dagger \phi_D)^2 \\ &+ \lambda_3 (\phi_S^\dagger \phi_S) (\phi_D^\dagger \phi_D) + \lambda_4 (\phi_S^\dagger \phi_D) (\phi_D^\dagger \phi_S) + \frac{\lambda_5}{2} \left[(\phi_S^\dagger \phi_D)^2 + (\phi_D^\dagger \phi_S)^2 \right], \end{split}$$

only one doublet acquires VeV v, as in SM
 (⇒ implies analogous EWSB)

Number of free parameters

- ⇒ then, go through standard procedure...
- ⇒ minimize potential
- ⇒ determine number of free parameters

Number of free parameters here: 7

e.g.

$$v, M_h, M_H, M_A, M_{H^{\pm}}, \lambda_2, \lambda_{345} [= \lambda_3 + \lambda_4 + \lambda_5]$$

• v, M_h fixed \Rightarrow left with **5** free parameters

Constraints: Theory

- vacuum stability,
- constraints to be in inert vacuum
- perturbative unitarity
- perturbativity of couplings
- choosing M_H as dark matter: $M_H \leq M_A$, $M_{H^{\pm}}$

Constraints: Experiment

$$M_h = 125.1 \,\text{GeV}, \, v = 246 \,\text{GeV}$$

- total width of M_h
- total width of W, Z
- collider constraints from signal strength/ direct searches
- electroweak precision through S, T, U
- unstable H^{\pm}
- reinterpreted / recastet LEP / LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015)
- dark matter relic density (upper bound)
- dark matter direct search limits (LUX)
- ⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, **MicrOmegas**

Vidvo. 23.6.2015

Obvious/ direct constraints on couplings

- some constraints ⇒ direct limits on couplings
- examples: limit on λ_2 from HHHH coupling, limit on $\lambda_{345}(M_H)$ from direct detection

 $\lambda_2,~\lambda_{345}$ plane and limits from perturbativity, positivity

 M_H , λ_{345} plane, limits from LUX

Other constraints less obvious (interplay); result ⇒ mass degeneracies

Benchmark selection

Tania Robens

- ⇒ points need to have passed all bounds
- ⇒ total cross sections calculated using Madgraph5, IDM model file from Goudelis ea, 2013 (LO)
- ⇒ effective ggH vertex implemented by hand
 - highest production cross sections: HA; H+H-

Figure : Production cross sections in pb at a 13 TeV LHC for *HA* (*left*) and H^+H^- (*right*), in the M_H , λ_{345} plane.

IDM benchmarks

Vidyo, 23.6.2015

Benchmarks: low masses, $M_H \leq 90 \, \mathrm{GeV}$

all benchmarks: $A \rightarrow ZH = 100\%$

Benchmark I: low scalar mass

$$M_H = 57.5 \,\text{GeV}, \ M_A = 113.0 \,\text{GeV}, M_{H^{\pm}} = 123 \,\text{GeV},$$

 $\lambda_{345} \in [-0.015; 0.015]$

$$HA: 0.371(4) \mathrm{pb}, H^+H^-: 0.097(1) \mathrm{pb}$$

 $H^+ \to W^+H$ with a BR > 0.99 .

Benchmark II: low scalar mass

$$M_H = 85.5 \,\text{GeV}, \ M_A = 111.0 \,\text{GeV}, M_{H^{\pm}} = 140, \,\text{GeV}$$

 $\lambda_{345} \in [-0.015; 0.015]$

$${\it HA}: 0.226(2){
m pb}, {\it H^+H^-}: 0.0605(9){
m pb}$$
 ${\it H^+}
ightarrow {\it W^+} {\it H(A)}$ with a BR $\sim 0.96(0.04).$

relatively exceptional due to highly constrained parameter space; large production cross sections

Benchmark: intermediate mass, $M_H \geq 100 \, \mathrm{GeV}$

Benchmark III: intermediate scalar mass

$$M_H = 128.0 \,\mathrm{GeV}, \ M_A = 134.0 \,\mathrm{GeV}, M_{H^\pm} = 176.0, \,\mathrm{GeV}$$

 $\lambda_{345} \in [-0.05;0.05]$

$$HA: 0.0765(7) \mathrm{pb}, H^+H^-: 0.0259(3) \mathrm{pb};$$

 $H^+ \to W^+H(A)$ with a BR $\sim 0.66(0.34)$

interesting because less exceptional region, un typical decay of H^\pm

Benchmark: high masses, $M_H \geq 300 \, \mathrm{GeV}$

Benchmark IV: high scalar mass, mass degeneracy

$$M_H = 363.0 \,\mathrm{GeV}, M_A = 374.0 \,\mathrm{GeV}, M_{H^\pm} = 374.0 \,\mathrm{GeV}$$

 $\lambda_{345} \in [-0.25; 0.25]$
 $H, A: 0.00122(1) \mathrm{pb}, H^+H^-: 0.00124(1) \mathrm{pb}$

$$H^{\pm}$$
 100 % to $W^{\pm}H$

Benchmark V: high scalar mass, no mass degeneracy

$$M_H = 311.0 \,\mathrm{GeV}, M_A = 415.0 \,\mathrm{GeV}, M_{H^\pm} = 447.0 \,\mathrm{GeV}$$

 $\lambda_{345} \in [-0.19; 0.19]$

$$H, A : 0.00129(1) \text{pb}, H^+H^- : 0.000553(7) \text{pb}$$

 $H^+ \to W^+H$ with a BR $\gtrsim 0.99$

more typical, lowish cross sections difference: production cross sections similar/ non similar, degeneracy (typical)/ non-degeneracy

Parameters tested at LHC

• dominant production cross sections and decays for LHC@13 TeV do not depend on λ_2 , only marginally on λ_{345}

```
⇒ mainly tested: masses ←
```

- all relevant couplings follow from ew parameters (+ derivative couplings) ⇒ in the end a kinematic test
- ullet only in expectional cases λ_{345} important; did not find such points
- ⇒ high complementarity between astroparticle physics and collider searches

(holds for
$$M_H \geq \frac{M_h}{2}$$
)

Last comment: tools for LHC phenomenology

- leading order production and decay: Madgraph5, + (currently) private version for ggh (top loop in $m_{\text{top}} \rightarrow \infty$ limit)
- in principle available: gg @ NLO, MG5 (needs however modification of current codes, not straightforward)
- IMHO: currently LO sufficient

Appendix

Relevant couplings

- ZHA: $\sim \frac{e}{s_W c_w}$
- ZH^+H^- : $\sim e \coth(2\theta_w)$
- $\gamma H^{+} H^{-}$: $\sim e$
- $h H^+ H^-$: $\lambda_3 v$
- H^+W^+H : $\sim \frac{e}{s_w}$
- $H^+ W^+ A$: $\sim \frac{e}{s_w}$

Aside: typical BRs

- decay $A \rightarrow HZ$ always 100 %
- decay H[±]

second channel $H^\pm o A W^\pm$

More direct constraints on couplings

• constraints on combination of M_H^{\pm}/M_h and λ_3 from one-loop corrected rate of $h \to \gamma \gamma$ (constraints: ratio too low !!)

